北京高压科学研究中心
Center for High Pressure Science &Technology Advanced Research

Publications






Selected publications (out of ~ 85; Google Scholar citations > 11,000; h-index 41):



Chen, J.; Liu, W.; Liu, J.; Zhang, X.; Yuan, M.; Zhao, Y.; Yan, J.; Hou, M.; Yan, J.; Kunz, M.; Tamura, N.; Zhang, H.*; Yin, Z.* Stability and Compressibility of Cation-Doped High-Entropy Oxide MgCoNiCuZnO5. J. Phys. Chem. C 2019, 123(9), 17735-17744.


Liu, J.; Yan, J.; Shi, Q.; Dong, H.; Zhang, J.; Wang, Z.; Huang, W.; Chen, B.; Zhang, H.* Pressure Dependence of Electrical Conductivity of Black Titania Hydrogenated at Different Temperatures. J. Phys. Chem. C 2019, 123 (7), 4094–4102.


Liu, W.; Chen, J.; Zhang, X.; Yan, J.; Hou, M.; Kunz, M.; Zhang, D.; Zhang, H.* Pressure-Induced Phase Transitions of Natural Brookite. ACS Earth Space Chem. 2019, 3 (5), 844–853.


Ke, F.; Chen, Y.; Yin, K.; Yan, J.; Zhang, H.; Liu, Z.; Tse, J. S.; Wu, J.; Mao, H.*; Chen, B.* Large Bandgap of Pressurized Trilayer Graphene. PNAS, 2019, 116 (19), 9186-9190.


Chen, B.*; Lin, J.-F.; Chen, J.; Zhang, H.; Zeng, Q. Synchrotron-Based High-Pressure Research in Materials Science. MRS Bulletin 2016, 41 (06), 473–478.


Liu, G.*; Kong, L.; Yan, J.; Liu, Z.; Zhang, H.; Lei, P.; Xu, T.; Mao, H.; Chen, B.* Nanocrystals in Compression: Unexpected Structural Phase Transition and Amorphization Due to Surface Impurities. Nanoscale 2016, 8 (23), 11803–11809.


De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; Colfen, H.; Dove, P. M.*Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349,  aaa6760. DOI: 10.1126/science.aaa6760.


Zhang, H.*; Banfield, J. F.Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2.Chem. Revs. 2014, 114, 9613 – 9644 .


Zhang, H.; De Yoreo, J. J.; Banfield, J. F.* A unified description of attachment-based crystal growth. ACS Nano, 2014, 8, 6526 – 6530. 


Zhang, H.*; Banfield, J. F.Interatomic Coulombic interactions as the driving force for oriented attachment.CrystEngComm, 2014, 16, 1568-1578.


Zhang, H.*; Finnegan, M. F.; Banfield, J. F. Titania nanorods curve to lower their energy.Nanoscale 2013, 5, 6742 – 6746.


Zhang, H.*; Banfield, J.F.* Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation.J. Phys. Chem. Lett. 2012, 3, 2882-2886.


Zhuang, Z,; Huang, F.; Lin, Z*.; Zhang, H.*Aggregation-induced fast crystal growth of SnO2 nanocrystals.J. Am. Chem. Soc. 2012, 134, 16228-16234.


Fernando, S; Baynes, M; Chen, B; Banfield, J. F.; Zhang, H.* Compressibility and structural stability of nanoparticulate goethite. RSC Adv. 2012, 2, 6768 -6772.


Zhang, H.*; Chen, B.; Banfield, J. F.  The size dependence of the surface free energy of titania nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 2553.


Chen, B.*; Zhang, H.; Dunphy-Guzman, K. A.; Spagnoli, D.; Kruger, M. B.; Muthu, D. V. S.; Kunz, M.; Fakra, Sirine; Hu, J. Z.; Guo, Q. Z.; Banfield, J. F.  Size-dependent elasticity of nanocrystalline titania.Phys. Rev. B 2009, 79, 125406.


Zhang, H.*; Chen, B.; Waychunas, G. A.; Banfield, J. F.Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 2008, 78, 214106.


Chen, B.*; Zhang, H.; Gilbert, B.; Banfield, J. F.Mechanism of inhibition of nanoparticle growth and phase transformation by surface impurities.Phys. Rev. Lett. 2007, 98, 106103.


Gilbert, B.; Huang, F.; Zhang, H.; Waychunas, G. A.; Banfield, J. F.* Nanoparticles: strained and stiff. Science 2004, 305, 651.


Zhang, H.*; Banfield, J. F.  Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations.Nano Lett. 2004, 4, 713.


Zhang, H.; Gilbert, B.; Huang, F.; Banfield, J. F.* Water-driven structure transformation in nanoparticles at room temperature.Nature 2003, 424, 1025.


Zhang, H.*; Huang, F.; Gilbert, B.; Banfield, J. F. Molecular dynamics simulations, thermodynamics analysis and experimental study of phase stability of zinc sulfide nanoparticles.J. Phys. Chem. B 2003, 107, 13051.


Zhang, H.*; Finnegan, M.; Banfield, J. F.  Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature.   Nano Lett. 2001, 1, 81.


Banfield, J. F.*; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.Science 2000, 289, 751.


Zhang, H.*; Banfield, J. F.  Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2.J. Phys. Chem. B 2000, 104, 3481. 


Zhang, H.*; Banfield, J. F. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation.J. Mater. Res. 2000, 15, 437.


Zhang, H.*; Banfield, J. F. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles.Am. Mineral. 1999, 84, 528.


Zhang, H.*; Banfield, J. F. Thermodynamic analysis of phase stability of nanocrystalline titania.J. Mater. Chem. 1998, 8, 2073.




Google Scholar page:

https://scholar.google.com/citations?user=87T1wFIAAAAJ&hl=en&oi=ao


A snapshot of above page:

http://eps.berkeley.edu/~heng/HZ-Citations.pdf


ResearchGate page:

http://www.researchgate.net/profile/Hengzhong_Zhang


Orcid:

https://orcid.org/0000-0003-2322-2274


Last update Sept., 2019