JANUARY 18, 2022 — Materials with zero-linear compression (ZLC) and zero-area compression (ZAC) hold great promises for specific applications retaining constant in specific directions or planes under external impaction. Up to now, no more than ten ZLC/ZAC materials have been reported, most of which are of very limited working pressure ranges (< 10 GPa). Herein, a pioneering work led by Dr. Ting...
2022-01-18
JANUARY 6, 2022 — New work from a team of scientists co-led by Dr. Takayuki Ishii from HPSTAR reported that the large depressions of the 660-kilometre discontinuity in cold subduction zones is related to an extremely steep akimotoite-bridgmanite transition at low temperatures. The slab stagnation may also be casued by the significant upward buoyancy casued from this deeper and delayed transtion in...
2022-01-06
DECEMBER 28, 2021 — New research by a team led by Dr. Haiyan Zheng from HPSTAR reports a completely functionalized crystalline polyacetylene produced using high-pressure techniques - the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group. Its unique structure combines the extremely high content of carbonyl groups and high...
2021-12-28
DECEMBER 25, 2021 — Stimulus-responsive photoluminescent materials have attracted extensive research attention in recent years owing to their potential application in information storage and switch devices. Most of the materials that exhibit such phenomena are small organics, organometallic materials, liquid crystals, or polymer networks. At present, materials with high pressure sensitivity and...
2021-12-22
DECEMBER 15, 2021 — New study from a team of scientists led by Dr. Qingyang Hu found that the high-conductivity and low-sound velocity of ε-FeOOH matched the features of heterogenous scatterers in the mid-lower mantle and such unique properties of hydrous ε-FeOOH, or possibly other Fe-enriched phases could be detected as evidence of active water transportation in the mid-lower mantle.
2021-12-15
DECEMBER 15, 2021 — By combining the ultrasonic interferometry and multianvil press, a team of scientists led by Dr. Qigyang Hu from HPSTAR extended the research of diamond_sqlquote_s elasticity from kilobar to gigapascal pressures and showed that diamond became increasingly compressible, reaching agreement with theory. They pointed out the unique potential of diamond in providing an accurate,...
2021-12-15
NOVEMBER 20, 2021 — New work by a team of scientists led by Dr. Kuo Li and Dr. Haiyan Zheng from HPSTAR have found that pressure gradients across various hydrogen-bearing compounds, such as γ-MnOOH, can promote dehydrogenation. The team proposes a pressure-gradient-driven battery through this process by separating the transferring routes of protons and electrons. The results are published in the...
2021-11-30
NOVEMBER 25, 2021 — A team of researchers by Dr.Huiyang Gou from HPSTAR and Dr. Howard Sheng from George Mason University in collaboration with Prof. Tomo Katsura at University Bayreuth, Prof. Mingsheng Wang at Xiamen University and Dr. Zhidan Zeng at HPSTAR, have discovered a new form of diamond that could fundamentally challenge our ideas about the nature of solids. This new member of the...
2021-11-25
NOVEMBER 24, 2021 — A research team led by Dr. Hengzhong Zhang from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) revealed that a new Cu-bearing van der Waals compound CuP2Se can be metallized and then turned into a superconductor accompanying a series of structural changes under compression. Their study illustrates that pressure can be used to harvest useful...
2021-11-24
NOVEMBER 4, 2021 — New work published in the Proceedings of the National Academy of Sciences by HPSTAR’s Yanhao Lin and Ho-Kwang “Dave” Mao — with collaborator Wim van Westrenen of Vrije Universiteit Amsterdam — demonstrates that oxygen is essential for rock to melt, and the more oxygen you add to rock, the more easily you can make magma.
2021-11-05
AUGUST 20, 2021 — Carbon exhibits a vast variety of allotropic forms stemming from its different chemical bonding motifs - from well-known graphite and diamond, to fullerenes and carbon nanotubes build of nanometer-sized structural units. In this row diamond possesses a “special” place being the hardest known natural material on Earth. This status-quo remained until a research team from Yanshan...
2021-10-15
SEPTEMBER 16, 2021 — The correlation between superconductivity and a disordered structure is an interesting and challenging topic in condensed matter physics. Although scientists discovered amorphous superconductors as early as 1954, their superconducting mechanism has remained mysterious due to their complex chemical and structural disorder, and limited investigative experimental techniques under...
2021-09-16
SEPTEMBER 2, 2021 — Semiconductors were widely used in manufacturing chops, solar cells, photovoltaic devices and so on, which have defined the third industrial revolution since the late 1900s. Although a large number of semiconductor materials are in production, people are still seeking new semiconductor materials with higher energy conversion efficiency. Choices for environmentally friendly and ...
2021-09-06
SEPTEMBER 6, 2021 — In a truly international effort, a team of scientists based in Japan, Australia, UK, USA and China have uncovered the high-pressure behavior of hydrogen chloride (HCl). The project, which was led by Dr. Philip Dalladay-Simpson of HPSTAR, details the significant role that hydrogen still plays even after the pressure-induced symmetrisation of the hydrogen bond in HCl. The team’s...
2021-09-06
JULY 23, 2021 — New work from a team of scientists led by Dr. Haiyan Zheng and Dr. Kuo Li from HPSTAR found the ethynylphenyl of 1,3,5-triethynylbenzene (TEB) undergoes [4 + 2] dehydro-Diels−Alder (DDA) reaction with phenyl at 4 GPa. Their study suggested that the DDA reaction between ethynylphenyl and phenyl is a promising route to decrease the reaction pressure of aromatics, which allows the...
2021-08-03
JULY 19, 2021 — A team of HPSTAR scientists led by Dr. Mingxue Tang has developed Stöber sol-gel method and in-shell sulfuration method craft γ-Ce2S3 nanoparticles in hollow mesoporous carbon shell with tunable voids to buffer the volume change upon electrochemical cycling for the first time. The synergetic effects of nanosized Ce2S3 core and the coating carbon shell with enhanced electronic...
2021-07-19
JUNE 15, 2021 — A team of HPSTAR scientists led by Dr. Yang Ding and Dr. Hongshan Deng has solved a thirty-year mystery regarding the insulator-to-metal transition in the quantum molecular compound GaTa4Se8(GTS), a material that could revolutionize computer memory as a resistive RAM. Using new methods integrating electrical resistance with Raman spectroscopy at high pressure, they observed an...
2021-06-15
MAY 25, 2021 — While the plates carry water to the Earth_sqlquote_s interior, phase transitions of dry olivine, the main mineral in the plates, are thought to be responsible for deep-focus earthquakes and plate deformation. This study resolves the contradiction of the presence of dry olivine even in wet plates. Takayuki Ishii, a staff scientist of HPSTAR, and Eiji Otani, professor emeritus at...
2021-05-25
MARCH 25, 2021 — Recently, a team of scientists co-led by Prof. Shouhang Bo from Shanghai Jiaotong University and Wenge Yang from HPSTAR (Center for High Pressure Science & Technology Advanced Research) proposed to use the Meyer-Neldel-Conductivity plot to design fast ionic conductors with improved conductivity. They stated that the Meyer-Neldel-Conductivity plot is a universal principle that can ...
2021-03-26
MARCH 9, 2021 — Although three-quarters of Earth’s surface is covered by water, standalone water or ice rarely exists in Earth’s interiors. The most common unit of “water” is hydroxyl, which is associated with host minerals to make them hydrous minerals. Here, a research group led by Dr. Qingyang Hu, Dr. Duckyoung Kim, and Dr. Jin Liu from the Center for High Pressure Science and Technology...
2021-03-09