MAY 16, 2018 — After continuous insistence on the pressure-driven spin-crossover in transition metal chalcogenides, a group of scientists co-led by Dr. Wenge Yang and Dr. Yonggang Wang of HPSTAR, firstly observed the emergence of superconductivity in Fe-based honeycomb lattice under compression. Before this, all the iron-based high-Tc superconductors structurally adopt FeSe-type square Fe lattice....
2018-05-16
APRIL 28, 2018 — Pressure-induced phase transition always involves symmetry and coordination change in a crystal. While researchers most focus on symmetry change instead of considering its coordination or local bonding varying when a crystal structure changed. A team of scientists led by Dr. Haozhe Liu of HPSTAR find a general coordination increase in VO2 phase transitions and state that this...
2018-04-28
JANUARY 31, 2018 — Superconductivity is a physical state occurring in certain materials, called superconductors, in which electrical resistance disappears completely when cooled below a characteristic critical temperature. This phenomenon can be induced under chemical and high external pressure conditions. New work from a team including Dr. Jinglong Zhu of HPSTAR found superconducting MoS2 under...
2018-04-25
APRIL19, 2018 — The compound BaPd2As2 represents the end member of the Pd-doped series and exists in the form of two types of crystal structures: ThCr2Si2-structure type (I4/mmm) and CeMg2Si2-structure type (P4/mmm). The former structure has bulk superconductivity, while in the latter structure only filamentary superconductivity was observed below 2 K. This shows that the crystal structure has a...
2018-04-20
APRIL 18, 2018 — The synthesis and properties of hydrogen-bearing compounds is an intensively studied area of physics and chemistry, mainly driven by hydrogen-storage applications. High pressure and high temperature have been an effective route to synthesis hydrides with extremely high hydrogen content. A new study by RTH lab, reports the discovery of new cobalt compounds, CoH and CoH2, with high...
2018-04-18
MARCH 20, 2018 — Pressure has long been recognized as a fundamental thermodynamic variable. It drastically alters physical and chemical properties of materials. A review on Reviews of Modern Physics from HPSTAR researchers led by Dr. Ho-Kwang, provides an in-depth review of how pressure drastically change our world and the key developments that have led to surprising high-pressure physics and...
2018-04-18
MARCH 7, 2018 — The Earth’s lower mantle comprises >55% by volume of our planet, extending from 670 to 2900 kilometers in depth. The lower mantle is potentially the most massive water reservoir in our planet, which largely depends on availability of hydrous minerals which can store and transport water down to the deep lower mantle. Through high-pressure-temperature experiments in a laser-heated...
2018-03-07
FEBRUARY 11, 2018 — Diamond anvil cell (DAC) has been used for almost 60 years to simulate extreme pressure environments, it holds the static pressure record generated in laboratories on the earth. Although some studies have demonstrated techniques to generate 4 million atmosphere pressures (400 GPa) – the generally accepted limit pressure of a conventional DAC, yet few have examined how the DAC...
2018-02-11
FEBRUARY 5, 2018 — Hydrogen-rich compounds have attracted attention because of their potential application in hydrogen storage and for high-Tc superconductivity. High-pressure methods have proven very effective in the search for new materials with high hydrogen contents. A new study led by Dr Jack Binns, a postdoctoral researcher in the group of Dr Ross Howie, reports the discovery of a new high-...
2018-02-05
NOVEMBER 23, 2017 — Free oxygen in the air that gives life to our living planet cannot be taken for granted. In fact, during the first half of the Earth’s 4.6 billion year history, oxygen was absent in the atmosphere. Only 2.4 billion years ago at the Great Oxidation Event (GOE), oxygen appeared suddenly, thus enabling the aerobic life like us to thrive and evolve. In seeking for possible source...
2017-11-23
NOVEMBER 20, 2017 — The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. The heavier hydrogen chalcogenides (i.e., H2Se and H2Te) are predicted to also exhibit high Tc superconductivity, however up until now remained experimentally unexplored. A new study led by Dr. Ross Howie of ...
2017-11-20
NOVEMBER 3, 2017 — It is proposed that the lattice water does not act as an electron donor but serves to change the electro transfer energetic through its unique polarity and hydrogen bonding capability. New study led by Dr. Lin Wang of HPSTAR and Prof. Enqi Gao of East China Normal University found that the higher the water content in the lattice, the less sensitively the compounds respond to...
2017-11-03
OCTOBER 30, 2017 — A group of scientists co-led by Dr. Shengcai Zhu of HPSTAR, investigated the evolution of hyper structure and screw dislocation for the framework material zeolite MTW, a useful industrial solid acid catalyst. They revealed that the complex screw dislocation core in zeolite MTW was composed by different crystal domains with different stacking vector. Their findings are published ...
2017-10-30
OCTOBER 19, 2017— New work led by HPSTAR researcher, Dr. Gang Liu experimentally convinced a first example of pressure-improved 2D hybrid perovskites and proposed that pressure treatments might offer a useful route to yield near-ideal single junction performance in the 2D hybrid perovskites. The discoveries are published by ACS Energy Letters.
2017-10-19
SEPTEMBER 29, 2017 — Pressure, as a fundamental thermodynamic parameter that can tailor physical and chemical properties of functional materials, has recently been used in tuning structures and properties of organic-inorganic hybrid perovskites. In recent issue of Chemical Science, a team of scientists led by Dr. Xujie Lü of HPSTAR gave a perspective of how pressure make changes in the hybrid...
2017-10-19
SEPTEMBER 11, 2017 — From a geoscientist_sqlquote_s view, the earth is made up of a giant iron core, covered by a thick layer of silicate mantle and a thin coating of crustal rocks. Water concentrates in oceans on Earth’s surface. A portion of water reacts with rocks and forms the so-called hydrous minerals that can transport deep into the mantle. Once they reach the bottom of the mantle,...
2017-09-11
SEPTEMBER 8, 2017 — New work led by HPSTAR graduate student, Cong Xu found abnormal semiconductor to insulator transition in cathode material, Li0.9CoO2 under pressure. The findings uncovered by the comprehensive high pressure investiations provide deep insights into the complex relationship of the crystal structure and electronic performance in this important cathode material, which may be used...
2017-09-08
AUGUST 27, 2017— Lithium acetylide, as a widely used electrode material for Li-ion battery has the highest theoretical capacity while with low conductivity for applications. New work from a HPSTAR team increased the conductivity of Lithium acetylide by 9 orders of magnitude in the use of high pressure method. And this pressure-enhanced conductivity could be kept to ambient conditions. Their...
2017-09-05
SEPTEMBER 1, 2017 — A team co-led by HPSTAR PhD student Fengliang Liu, investigated the evolution of superconductivity and structure with pressure for the new superconductor FeS (Tc ≈ 4.5 K), a sulfide counterpart of FeSe. They observed two superconducting domes in FeS under compression with 30% enhancement in maximum Tc in the second dome. Their discoveries are published by NPJ Quantum Materials ...
2017-09-04
AUGUST 23, 2017 — Thanks to the symmetric O-H-O bonding, a certain class of hydrous minerals is recently discovered to survive in the high-pressure high-temperature condition that mimics the deep lower mantle. The composition FeO2H, named goethite when they are found on Earth surface, is one of such hydrous minerals. It forms symmetric O-H-O framework at high-pressure hence features higher...
2017-08-30