NOVEMBER 29, 2022 — New research from a team of scientists led by Drs. Kuo Li and Haiyan Zheng from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) firstly found reported the first synthesize of the a three-dimensional atomically ordered crystalline carbon nanothreads (CNThs) can be synthesized from a biomass precursor, 2,5-furandicarboxylic acid (FDCA), through [4+2...
2022-11-29
SEPTEMBER 10, 2022 A team of HPSTAR scientists led by Dr. Zhiqiang Chen cooperated with Prof. Zhi Su from Nanjing Normal University found that the mechanical ultra-stability of MOF porous materials depends extensively on their porosity. In this particular work, compared to the amorphization of dense Mn-MOF at 0.8 GPa in a diamond anvil cell, the mechanical stability of porous Mn0.05Fe0.95-MOF has ...
2022-11-15
OCTOBER 10, 2022 — New research from a team of scientists co-led by Dr. Wenge Yang from HPSTAR obtained a highly transparent and metastable phase with two orders of magnitude enhancement in conductivity in Ti-doped In2O3 by pressure treatment and thus proposed to apply pressure to modulate the lattice and electronic and optical properties precisely on TCOs. The study is published in Advanced...
2022-11-09
NOVEMBER 3, 2022 — In For semiconductor heterostructures, reconfiguring the band-edge states and modulating their interplay with charge carriers in a continuous manner have been a long-standing challenge. Recently, an international research team led by Dr. Xujie Lü from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) and Prof. Letian Dou from Purdue University chosen...
2022-11-03
OCTOBER 26, 2022 — Water is transported by oceanic plates into the Earth_sqlquote_s deep interior and changes the properties of minerals and rocks, affecting the Earth_sqlquote_s internal material cycle and environmental evolution since the formation of the Earth. An international research group led by Dr. Takayuki Ishii and Dr. Ho-kwang Mao (Center for High Pressure Science and Technology...
2022-10-26
AUGUST 17, 2022 — Preservation of the high-pressure states of materials at ambient conditions is a long-sought-after goal for fundamental research and practical applications. A team of scientists led by Drs. Zhidan (Denise) Zeng, Qiaoshi Zeng, and Ho-Kwang Mao from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) and Prof. Wendy Mao from Stanford University report an ...
2022-08-17
AUGUST 10, 2022 — Integrating the advantages of crystalline and amorphous states by creating hybrid structures has long been pursued. Recently, a research team led by Dr. Xujie Lü from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) reports the discovery of a new crystalline-amorphous hybrid structure under pressure. Their study, entitled “Nested order-disorder...
2022-08-10
JULY 23, 2022 — New study from a team of scientists co-led by Drs. Yanhao Lin, Qingyang Hu and Ho-kwang Mao from HPSTAR and Michael Walter from Carnegie Institution for Science, first quantified the water storage capacity in stishovite of ~3.5 wt% in the transition zone and shallow lower mantle, decreasing to about 0.8 wt% at the base of the mantle. This study shows that stishovite / post...
2022-08-10
JUNE 27, 2022 — Valence change commonly happens in rare earth metals, while for Eu, it seems an exception in this group of metals. A team of scientists led by Dr. Yang Ding from HPSTAR published a study in the June 27 issue of the journal of Physical Review Letters confirming that a valence transition also occurred in Eu around 80 GPa along with a structural variation. Their study solved a long...
2022-06-28
MAY 28, 2022 — In recent work published as an Editors’Suggestion in Physical Review Letters, a team led by Dr. Ross Howie, and including HPSTAR (past and present) members Dr. Umbertoluca Ranieri, Dr. Mary-Ellen Donnelly, Dr. Philip Dalladay-Simpson, Prof. Eugene Gregoryanz, and Miss Huixin Hu report the high-pressure formation of the most H2-rich compounds found to date, (CH4)3(H2)25, CH4(H2)2 and...
2022-06-07
JUNE 1, 2022 — An international research group led by Dr. Thomas Meier from the Center of High Pressure Science and Technology Advanced Research (HPSTAR) in Beijing, where able to discover a unifying relationship in a number of distinct samples under extreme pressures. In particular, they were able to observe Hydrogen bond symmetrisations in the high-pressure polymorphs ice VII and X, magnesium ...
2022-06-01
MAY 5, 2022 — High-drive electromechanical applications require ferroelectrics accounting for a large coercive field and high piezoelectricity simultaneously but it is still a challenge. Here, a team co-led by Dr. Gang Liu from HPSTAR performs a closely integrated experimental and computational investigations to solve this long-standing puzzle and demonstrate it in a relaxor-based ferroelectric...
2022-05-05
APRIL 26, 2022 — New study from a team of scientists co-led by Dr. Qiaoshi Zeng from Center for High Pressure Science and Technology Advance Research reported a high-entropy-induced glass-to-glass transition in the NbNiZrTiCo high-entropy metallic glass. This glass-to-glass transition leads to a significant improvement of the modulus, hardness, and thermal stability. Their findings demonstrate that ...
2022-05-05
APRIL 30, 2022 — A team of researchers led by HPSTAR scientist Dr. Wenge Yang has recently used pressure-tuning to discover much richer transport properties emerging in a 400 nm thick bulk HgTe crystal, to rival the unique properties of its thin-film counterpart. Moreover, they also discovered superconductivity in a series of the bulk HgTe’s high-pressure phases. These fascinating results are...
2022-05-05
APRIL 20, 2022 — Recently, a research team led by Drs. Ho-kwang Mao, Haiyan Zheng and Kuo Li from Center for High Pressure Science and Technology Advanced Research (HPSTAR) synthesized ultrafine diamond nanothreads with perfect carbon/nitrogen ordered structure through a distinctive reaction of aromatic systems under high pressure, and thus proposed a new method to synthesize more novel structure-...
2022-04-20
APRIL 18, 2022 — Glass is everwhere around our life, like glass cup, and it has been made since ancient times. However, we still know very little about its structure in-depth due to confined characterization techniques. By making glass using berlinite crystals as starting materials, the team co-led by Dr. Qingyang Hu from HPSTAR proposed that a remaining topological ordering origin of glass and...
2022-04-18
MARCH 18, 2022 — A research group co-led by Dr. Wenge Yang of HPSTAR, has employed ultrafast laser-initiated time-resolved X-ray diffraction (TR-XRD) (with a time resolution of 79 picosenconds) to directly track the structural evolution of a prototypical two-dimensional (2D) lead-free perovskite (Cs3Bi2Br9) upon photoexcitation. Their work, “Visualizing Light-Induced Microstrain and Phase...
2022-03-30
FEBRUARY 21,2022 — Measuring and understanding the thermal conductivities of materials is essential for many practical applications we use daily, but what happens under high pressure? A new review paper of Thermal Conductivity of Materials under Pressure published recently in Nature Reviews Physics (online February 21st) by HPSTAR’s Dr. Xiaojia Chen summarizes the recent breakthroughs in high...
2022-03-14
FEBRUARY 10, 2022 — Over the past several decades, it is widely thought that the Earth inner core is solid composed of iron alloy, but a team of scientists led by Center for High Pressure Science and Technology Advance Research (HPSTAR) and Institute of Geochemistry of CAS (GYIG) suggests that the inner core is not a conventionally known solid but a mixture of solid iron and light-element fluids....
2022-02-10
JANUARY 18, 2022 — Materials with multi-stabilities controllable by external stimuli are potential for high-capacity information storage and switch devices. Second-harmonic-generation (SHG) as a distinct optical phenomenon is particularly suitable for information storage and readout, nevertheless, pressure-induced multi-step SHG switching material has rarely been reported. A research team led by ...
2022-01-18