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Energy dispersion, superconductivity, and magnetic fluctuations in stacked altermagnetic materials
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Recently, altermagnetism (AM) has emerged as a new category of magnetism, alongside conventional anti-
ferromagnetism (AFM) and ferromagnetism. In an AM, superconductivity (SC) is faced with a dilemma that
the spin-polarized bands, induced by the broken time reversal (T ) symmetry, dominantly support spin-triplet
pairing. In contrast, AM spin fluctuations routinely facilitate spin-singlet pairing as in AFM. Consequently,
unconventional SC is either absent or weak in AM materials. Here, we propose that stacking two-dimensional
(2D) AM materials could resolve this dilemma. Stacked 2D materials have yielded a variety of new electronic
properties by altering the symmetries inherent in the monolayer. In a 2D anisotropic Hubbard model, we
investigate the general energy dispersions of both single-layer and stacked AM materials. We demonstrate that
AM sheet stacking can alter the original symmetries, consequently affecting the energy dispersion. The interlayer
magnetic coupling enhances the low q magnetic fluctuations. T symmetry is restored in the AA stacking with
an antiferromagnetic interlayer coupling and then both the energy dispersion and pairing interaction are in favor
of spin-singlet SC. The ferromagnetic interlayer coupling in the AB stacking not only recovers T symmetry but
also supports spin-triplet pairing. It is further anticipated that twisted bilayer AM sheets could exhibit additional
novel electronic properties, including topology, flat bands, and collective excitations. Our work illustrates that
stacking sheets of AM materials could open up a unique research domain in exploring novel quantum phenomena
and offer a fertile ground for potential electronic applications.

DOI: 10.1103/PhysRevB.111.104432

I. INTRODUCTION

A recently identified category of magnetism, referred to
as altermagnetism (AM), has been extensively studied due
to its distinct properties and potential applications [1–8]. It
exhibits a zero net magnetization, akin to conventional anti-
ferromagnetism (AFM), and spin-splitting energy dispersion
similar to ferromagnetism (FM) in the reciprocal momentum
space. Owing to their significant fundamental and techno-
logical significance, extensive theoretical and experimental
research has been conducted on these captivating magnets. A
variety of unique electromagnetic phenomena have been the-
oretically predicted, including spin-dependent band splitting
and anomalous Hall and Kerr effects [9–13], as well as spin
current and torque [14–19], and substantial tunneling magne-
toresistance effects [20]. Meanwhile, materials hypothesized
to exhibit antiferromagnetic properties have been the subject
of experimental inquiries, such as RuO2 [2,21–24], FeSb2

[25], MnF2 [6,26,27], MnTe [28–30], Mn5Si3 [31], CrSb [32],
and La2CuO4 [2].

*Contact author: junchang@snnu.edu.cn
†Contact author: luht@lzu.edu.cn

The emergence of superconductivity (SC) in AM has gar-
nered immediate interest [33–42]. A defining characteristic
of AM is the broken translation or inversion symmetry be-
tween the two magnetic sublattices besides the antiparallel
magnetization. Owing to the alternating spin polarization in
real space, the superconducting condensate in AM remains
nonmagnetic, similar to that in AFM. Unlike AFM, the AM
structure, similar to FM, breaks the T symmetry and elim-
inates the spin degeneracy of the electronic energy bands,
resulting in ε(k,↑) �= ε(−k,↓). On one hand, near the Fermi
energy levels, spin-polarized electrons with antiparallel mo-
menta tend to form spin-triplet Cooper pairs, as is typical
in FM. On the other hand, the superconducting pairing in-
teraction is frequently ascribed to magnetic fluctuations in
both AFM and FM, which support spin-singlet and spin-triplet
SC, respectively. Given that the AM order typically deviates
only slightly from AFM, the spin fluctuation spectra in AM
closely resemble those in AFM [33,43]. Consequently, the SC
induced by AM magnetic fluctuations is expected to be pre-
dominantly characterized by spin-singlet pairing. This conflict
between the pairing interactions and the electronic structure
could potentially lead to the absence or weakness of SC in
AM. Despite the potential for magnetic fluctuations at low
q, arising from scattering between different spin-polarized
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bands, to support spin-triplet SC in AM, the typically weak
spectral weight of these fluctuations at low q results in sub-
stantially weaker spin-triplet pairing [43].

In this study, we concentrate on the energy dispersion
of 2D AM materials. A general anisotropic Hubbard model,
incorporating an on-site Coulomb repulsion denoted by U, is
investigated. Utilizing the on-site mean field approximation,
we derive the energy dispersion. The unconventional super-
conducting pairing is ascribed to the short-range magnetic
interactions among electrons. In a single layer, the energy
band is spin split due to the broken T symmetry by the AM
order; thus spin-singlet Cooper pairs with T symmetry are
not favored. On the other hand, AM spin fluctuations typically
resemble those in AFM, favoring spin-singlet pairing. We pro-
pose that stacking AM sheets in some patterns can restore the
broken T symmetry in AM materials, thereby supporting the
formation of spin-singlet Cooper pairs. The interlayer mag-
netic coupling strengthens the low q magnetic fluctuations.
Stacking sheets of 2D materials alters the original symmetries
of the individual layers [44–46] and endows them with a vari-
ety of new electronic properties [47–52]. Furthermore, when
the layers are twisted relative to each other at an angle, the
resulting superlattice exhibits a significantly larger periodicity
than the individual layer, thereby possessing complex and rich
electronic properties, such as superconductivity, correlated
insulating states, and flat electronic bands. We anticipate that
stacked 2D AM materials will pave new avenues for both
fundamental research and potential applications. The capa-
bility to modulate electronic properties through twist angle
variation and external field application further constitutes a
crucial platform for investigating novel quantum phenomena
in AM.

II. SINGLE LAYER AM MODEL

Initially, to investigate the properties of a single AM sheet,
we construct a 2D Hubbard model with the Hamiltonian

H = −
∑
i jσ

(ti j + μδi j )c
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

where c†
iσ and ciσ are the electron creation and annihilation

operators with spin σ on site i. niσ = c†
iσ ciσ represents the

corresponding particle number operators. Furthermore, ti j de-
notes the single-particle hopping integral between site i and
j. U represents the on-site Coulomb repulsion, while μ is the
chemical potential.

For the interaction term of Eq. (1), we initially ignore the
fluctuations in particle number and subsequently apply the
mean field decoupling [43],

Uni↑ni↓ ≈ U (〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉). (2)

Further, the average spin and particle number are defined,

Si ≡ 1
2 〈ni↑ − ni↓〉, Ni ≡ 〈ni↑ + ni↓〉. (3)

The mean field Hamiltonian is written as

Hmf = −
∑
i jσ

(ti j + μδi j + σUSiδi j )c
†
iσ c jσ , (4)

where UNi has been absorbed into the chemical potential and
the constant term U 〈ni↑〉〈ni↓〉 is neglected. To characterize

AM, the lattice is partitioned into A and B sublattices, fea-
turing distinct intrasublattice (AA and BB) hopping terms. By
setting the chemical potential μ to zero, the Fourier transfor-
mation of the mean field Hamiltonian into reciprocal space
yields

Hmf = −
∑
aa′kσ

εaa′ (k, σ )c†
akσ ca′kσ , (5)

where k is the crystal momenta of a sublattice, a and a′
belong to sublattice A or B, and the matrix elements of the
Hamiltonian are given by

εaa′ (k, σ ) = εaa′ (k) + σUSaδaa′ , (6)

where σ = ±1 for spin up and down, respectively, and εaa′ (k)
represents the spin independent matrix elements, determined
by the lattice structure and the hopping integrals between
sublattices a and a′. The nature of Eq. (6) is highly sensitive
to the hopping integrals ti j , the mean spin values SA and SB

on the two sublattices. When there is no net magnetization on
either sublattice, or SA = SB = 0, it is a paramagnetic (PM)
state. A ferromagnetic state is realized when both sublattices
have the parallel alignment magnetization or SA = SB �= 0.
The antiferromagnetic state emerges when there is translation
or inversion symmetry between the two antiparallel magnetic
sublattices with SA = −SB �= 0. Lastly, an altermagnetic state
requires the breaking of translation and inversion symme-
try between the two antiparallel magnetic sublattices. This
can be achieved through anisotropic hopping constants or a
rotation symmetry between the two sublattices, along with
nonzero magnetizations. In AM materials, it is assumed that
the electron density is uniform with NA = NB, whereas the
spin polarization alternates between sublattices A and B with
SA = −SB. Then, the system energy dispersion is given by

ε∓(k, σ ) = εA+B(k, σ ) ∓
√

ε2
AB(k) + ε2

A−B(k, σ ), (7)

where

εA±B(k, σ ) ≡ 1
2 [εAA(k, σ ) ± εBB(k, σ )]

and

εA±B(k) ≡ 1
2 [εAA(k) ± εBB(k)].

With the aid of Eq. (6), εA+B(k, σ ) = εA+B(k) is spin inde-
pendent and εA−B(k, σ ) = εA−B(k) − σh is spin dependent,
where h = USA. Then the system energy dispersion in Eq. (7)
is rewritten as

ε∓(k, σ ) = εA+B(k) ∓
√

ε2
AB(k) + [εA−B(k) − σh]2. (8)

Given that εaa′ (k) exhibits inversion symmetry in the mo-
mentum space, i.e., εaa′ (k) = εaa′ (−k), it follows that the
spin-splitting bands ε∓(k,↑) �= ε∓(−k,↓) provided that the
translation or inversion symmetry between the A and B sub-
lattice is broken, i.e., εA−B(k) �= 0, while εA−B(k) = 0 leads
to spin degenerated AFM state. In the absence of spin-orbit
interaction, such energy dispersion exclusively supports spin-
triplet Cooper pairs with parallel spin order parameter �σσ

and no coupling exists between the two order parameters �↑↑
and �↓↓. The spin symmetry between up and down in the AM
sublattice ensures the average order parameter unitary [33].
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FIG. 1. Schematic of stacking two-dimensional (2D) altermag-
netism sheets without a twist angle. The lattice is divided into A (red)
and B (blue) sublattices, with distinct hopping integrals between the
same-type sublattices. The index l = 1 and −1 signify the top and the
bottom layers, respectively. Within the same layer, the average spin
polarizations on A and B sublattices are antiparallel, with SA = −SB,
whereas across different layers, the spin polarizations may either
maintain this antiparallel relationship, SA(l = 1) = −SA(l = −1), or
align parallel, SA(l = 1) = SA(l = −1). The patterns of A-A and
B-B stacking are depicted in the left and right panels, respectively.

Equation (8) describes a general energy dispersion re-
lation for anisotropic AFM and AM materials. For AFM
materials, there is typically a translation or inversion sym-
metry between the two sublattices with opposite spins. This
symmetry implies that the spin-independent Hamiltonian ma-
trix elements εaa(k) are identical for both sublattices, i.e.,
εAA(k) = εBB(k) or εA−B(k) = 0 for all k. Given this sym-
metry, the energy dispersions are spin degenerate, ε∓(k, σ ) =
εA+B(k) ∓

√
ε2

AB(k) + h2. On the other hand, if the translation
or inversion symmetry between the A and B sublattices is
broken, then there exists k such that εA−B(k) �= 0. In this case,
the energy dispersions become spin dependent, which is char-
acteristic of altermagnetism. For example, if the translation or
inversion transformation of the A sublattices is followed by a
rotation operation and spin reversal operation 1̄ to reach the
B sublattices [53], then the translation or inversion symmetry
between the A and B sublattices can be broken. The broken
symmetry can lead to differences in the Hamiltonian matrix
elements between the two sublattices, specifically, εA−B(k) �=
0. This results in spin-dependent energy dispersions. In Fig. 1,
the translation transformation of the A sublattices is followed
by a π/2 rotation about the axis perpendicular to the planes
and spin reversal 1̄ to reach the B sublattices. Once the spe-
cific geometric structure is defined, the specific type of spin
splitting can be determined. Considering the square lattice
with two sublattices as an example, the matrix elements of
the Hamiltonian are given by [43]

εAA(k) = −2t1 cos 2kx − 2t2 cos 2ky, (9)

εBB(k) = −2t2 cos 2kx − 2t1 cos 2ky, (10)

εAB(k) = −2t0(cos kx + cos ky), (11)

where t0 represents the nearest sublattice A-B hopping ampli-
tude and t1 and t2 are the intrasublattice hopping constants that
break the sublattice C4 symmetry. Adopting the parameters
from Ref. [43], with t0 = 1 as the unit of energy, t1 = 0.4t0,
t2 = 0.2t0, and U = 3.6t0. The corresponding energy band
structure, as described in Eq. (8), is depicted in Fig. 2. The
four energy bands result from the sublattices and spins. The
spin up and down bands are split, depending on the crystal
momentum when t1 �= t2.

FIG. 2. Metallic AM energy band structure on a square lat-
tice in Eq. (8). Following the parameters in Ref. [43], t0 = 1 as
the unit of energy, t1 = 0.4t0, t2 = 0.2t0, and U = 3.6t0. Red and blue
bands indicate the spin- ↑ and spin- ↓ components, respectively. The
spin splitting is k dependent. Along M − �, the spin- ↑ and spin- ↓
bands are degenerate. The Fermi surfaces consist of hole pockets at
(±π/2,±π/2) and electron pockets at (±π, 0) and (0, ±π ) in the
reduced Brillouin zone.

In the study of energy dispersion, we focus on the Hubbard
model, while, in the study of superconductivity, we turn to
the low-energy effective model of the Hubbard model, namely
the t-J model. The Heisenberg exchange interaction couples
electrons at neighboring sites

Hint =
∑

i j

Ji jsi · s j, (12)

where the spin operator si = c†
iσ [σ]σσ ′ciσ ′/2 with Pauli matrix

σ = (σx, σy, σz ). The pairing order parameters �σσ ′ could
stem from the magnetic interaction in Eq. (12) using a
mean field method. From the real space point of view, the
nearest-neighbor magnetic exchange interaction JAB in the
AM state typically favors spin-singlet pairing and the next-
nearest-neighbor JAA and JBB support spin-triplet pairing.
Nevertheless, the next-nearest-neighbor exchange interactions
are typically much weaker than the nearest-neighbor cou-
plings. Therefore, the spin-singlet pairing should be dominant
in terms of magnetic interaction. On the other side, the long-
range magnetic order and spin fluctuations near q ≈ 0 in the
AM phase are also possible [33]. Such magnetic fluctuations
could support triplet pairing. However, the spectral weight of
the spin fluctuations near q ≈ 0 in AM is typically quite small,
as the AM order often slightly deviates from the AFM order
[43]. Consequently, the spin fluctuation dominantly mediates
spin-singlet pairing. The contradiction between the electronic
structure, favoring spin-triplet pairing, and the pairing inter-
action, supporting spin-singlet pairing, results in the absence
of or weak SC in the AM phase. We tend to alleviate this
predicament by stacking AM sheets to alter the electronic
structures and spin fluctuation spectra.

III. STACKED LAYER MODEL

Recently, atomically stacking quasi-2D materials results in
various superstructures by altering the original geometrical
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symmetries inherent in individual layers [47–52]. The arti-
ficial superstructure induces a variety of unique electronic
properties, including superconductivity, magnetism, topology,
correlated insulating states, and flat electronic bands. From a
fundamental perspective, the complexity and richness of the
electronic properties in stacked 2D materials present signif-
icant opportunities to study emergent quantum phenomena.
From an application standpoint, stacked 2D materials offer
a unique potential for the development of low-power and
high-speed electronic devices. Specifically, when two sheets
of a 2D material are twisted at the “magic angle,” a moire
superlattice emerges due to the interference between the
two layers. Here, we consider two individual AM layers,
designated by l = ±1. Initially, we disregard the interlayer
coupling. When the local magnetic moments on sublattice A
are aligned, SA(l = 1) = SA(l = −1), the energy dispersions
mirror those in Eq. (8) for a single layer. Conversely, if the
local magnetic moments on sublattice A are in opposition,
SA(l = 1) = −SA(l = −1), then the dispersion is given by

ε∓(k, σ, l ) = εA+B(k) ∓
√

ε2
AB(k) + [εA−B(k) − lσh]2.

(13)

It is evident that the energy dispersion of the two sheets with
opposite spin orientations is identical, i.e., ε∓(k,↑, l = 1) =
ε∓(k,↓, l = −1). It is anticipated that the layer coupling
could render the system dispersion spin independent.

To unite two layers together, the layer coupling is intro-
duced, such as van der Waals interaction or chemical bonding.
It is widely recognized that the energy dispersion of stacked
materials is contingent upon the stacking patterns. For sim-
plicity, we restrict our analysis to zero twist angle between
sheets and the effective interlayer hopping t⊥(il, jl ′)c†

iσ l c jσ l ′

is limited to the nearest neighbors, with t⊥(il, il ′) = t⊥.

A. AA stacking

The nature of the interlayer magnetic coupling between
the stacked sheets, whether ferromagnetic or antiferromag-
netic, is dictated by a combination of the magnetic ions
and their surrounding ligands, which is encapsulated by the
Goodenough-Kanamori-Anderson rule [54–57]. For the AA
stacked AM sheets with SA(l = 1) = −SA(l = −1), the mean
field Hamiltonian of this system can be diagonalized exactly
and the resulting energy dispersion is characterized by

ε∓
∓ (k, σ ) = εA+B(k) ∓

√
ε2

AB(k) + ξ 2∓(k), (14)

with

ξ 2
∓(k) = ε2

A−B(k) + t2
⊥ + h2

∓ 2
√

ε2
A−B(k)(t2

⊥ + h2) + ε2
AB(k)t2

⊥. (15)

It is evident that the dispersion is spin independent, with
ε∓
∓ (k,↑) = ε∓

∓ (−k,↓). The interlayer coupling restores the
broken T symmetry present in the monolayer. This elec-
tronic structure, resulting from interlayer coupling, could
host spin-singlet Cooper pairs, in contrast to the single
AM layer, which only supports spin-triplet SC. Further-
more, the stacking pattern modifies the spin fluctuations. The
nearest-neighbor magnetic interaction between two layers is

FIG. 3. Bare and RPA magnetic susceptibilities χ0(q, 0) and
χRPA(q, 0) in the AA stacked AM sheets with SA(l = 1) = −SA(l =
−1). The temperature T = 0.001t0, t⊥ = 0.2t0, and the other param-
eters are the same as those in Fig. 2. The RPA correction significantly
strengthens the spin fluctuations χRPA(q, 0) around the momenta
(0,0), (π, 0), and (π, π ).

described by

Hint =
∑
i,l �=l ′

Jill ′sil · sil ′ , (16)

where the layer index l, l ′ = ±1. The interlayer spin coupling
within the same unit cell is expected to enhance the low q
spin fluctuations. The susceptibility χ0 can be expressed by
[8,43,58]

χ0σσ ′ (q, ω) =
∑

k

Ak,q[ f (ε∓
∓ (k, σ )) − f (ε∓

∓ (k + q, σ ′))]
[ω + iη − ε∓

∓ (k, σ ) + ε∓
∓ (k + q, σ ′)]

,

(17)

where Ak,q is the coherence factor and f is the Fermi distribu-
tion function. Due to the energy band degeneracy ε∓

∓ (k,↑) =
ε∓
∓ (k,↓), the χ0 at low q ≈ 0 spin fluctuations is dominantly

determined by the magnetic scattering processes between the
degenerate bands. The magnetic interaction in stacking mate-
rials can be decomposed into intralayer and interlayer pairing
under the mean field method [59]. The AFM interlayer mag-
netic fluctuations are capable of mediating s-wave spin-singlet
pairing. Thus, in AA stacking with antiferromagnetic cou-
pling between two layers, both electronic structure and spin
fluctuations support spin-singlet SC.

Using the same parameters as those for the square lattice
with two sublattices in Fig. 2, we investigate the bare and ran-
dom phase approximation (RPA) magnetic susceptibility of
the AA stacked AM sheets with SA(l = 1) = −SA(l = − 1).
As depicted in Fig. 3, at the wave vector Q = (π, π ), the
bare susceptibility χ0(Q, ω = 0) = χ0(q = 0, ω = 0) is pro-
portional to the density of states, which is a consequence
of the equality ε∓

∓ (k) = ε∓
∓ (k + Q). The multiorbital RPA

susceptibility matrix can be written as [8]

[χRPA(q, iqn)]μ1,μ2
μ3,μ4

= [χ0(q, iqn)[1 − Uχ0(q, iqn)]−1]μ1,μ2
μ3,μ4

,

(18)

where μi is the orbital index and iqn is a bosonic Matsubara
frequency, [U ]μ1,μ2

μ3,μ4
= U for μ1 = μ2 = μ3 = μ4. The RPA
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correction of the on-site Hubbard interaction primarily ampli-
fies the amplitude of spin fluctuations while subtly modifying
the momentum structure. Furthermore, in Fig. 3, the RPA
correction significantly boosts the spin fluctuations χRPA(q, 0)
around the momenta (0,0), (π, 0), and (π, π ). The enhance-
ment is expected to favor interlayer SC pairing.

In the AA stacking, if the interlayer coupling is ferro-
magnetic or SA(l = 1) = SA(l = −1), the energy dispersion
becomes spin dependent and is given by

ε∓
∓ (k, σ ) = εA+B(k) ∓ t⊥ ∓

√
ε2

AB(k) + [εA−B(k) − σh]2.

(19)

The interlayer spin coupling significantly enhances the low
q spin fluctuations by interband processes around energy 2t⊥
due to ε−

∓ (k, σ ) = ε+
∓ (k, σ ) + 2t⊥. In contrast to the antifer-

romagnetic interlayer coupling, the ferromagnetic coupling
between layers favors s-wave spin-triplet pairing. Conse-
quently, the electronic structure and spin fluctuations both
support spin-triplet SC in AA stacking with ferromagnetic
interlayer coupling. This distinction underscores the pivotal
role of interlayer magnetic coupling in determining the type of
superconducting pairing that can emerge in stacked systems.

Applying the decomposition of the Pauli matrix product
into spin triplet and singlet configurations,

σαβ · σγ δ = 1
2 (δαβδγ δ + δαδδβγ )

− 3
2 (δαβδγ δ − δαδδβγ ), (20)

the nearest-neighbor magnetic interaction between two layers
in the spin-triplet channel could be written as [60]

Jll ′sl · sl ′ → Jll ′

4
[nl↑nl ′↑ + nl ′↓nl ′↓], (21)

where only the same spin interaction terms are kept, as the
spin-split bands in AM can only support Cooper pairs with the
order parameter �σσ ; see Ref. [33]. The s-wave spin-triplet
parameter order in real space is �σσ (i) ∼ 〈cilσ cil ′σ 〉|l �=l ′ for
both sublattices, considering T symmetry broken by the AM
order, and after the Fourier transformation to moment space
the pairing amplitudes are given by

�s
σσ = Jll ′

4N

∑
k

〈ckσ c−kσ 〉(γ s+is)∗, (22)

where the ferromagnetic coupling Jll ′ < 0 and the s-wave
gap function factor γ s+is = (1 + i)/

√
2, indicating broken T

symmetry. Since SC requires a metallic altermagnetic state,
we assume the hole doping away from the Mott insulator is
slight and very close to half filling per sublattice. Then in
the energy dispersion Eq. (19), only the four lower ε∓

− (k, σ )
bands are occupied. Considering the slight doping, only the
top ε+

− (k, σ ) bands cross the Fermi energy level and εAB(k)
or the hopping between the A and B sublattice is strongly
suppressed by the large Hubbard U . Then

ε+
− (k, σ ) ≈ εA+B(k) + σεA−B(k) + t⊥ − h.

Solving the SC gap Eq. (22) self-consistently, the BCS-like
gap equation can be formulated as

−
∫

d2k

4π2

Jll ′

4Es(k, σ )
tanh

βEs(k, σ )

2
= 1, (23)

with the Bogoliubov quasiparticle energy spectra

Es(k, σ ) =
√

[ε+
− (k, σ )]2 + [

�s
σσ

]2
.

According to BCS theory, as long as Jll ′ < 0 or ferromagnetic
coupling, there exists a finite SC gap or order parameter to the
gap equation.

The BCS-like gap equation for SA(l = 1) = −SA(l = −1)
is analogous to Eq. (23). The distinction lies in the emer-
gence of SC in the spin-singlet channel, where the s-wave
gap function factor γ s = 1, exhibiting T symmetry, and the
interaction term Jll ′/4 in the spin-triplet channel is replaced by
−3Jll ′/4 in the spin-singlet channel gap equation according to
the decomposition Eq. (20). For Jll ′ > 0 in antiferromagetic
interlayer coupling, there exists a finite SC order parameter
solution to the gap equation.

B. AB stacking

For comparison, the dispersion in the AB stacking, char-
acterized by SA(l = 1) = −SB(l = −1), is spin dependent,
similar to that in the single layer. The spin dependent disper-
sion is

ε∓
∓ (k, σ ) = εA+B(k) ∓

√
[εAB(k) ∓ t⊥]2 + [εA−B(k) − σh]2.

(24)

Though the antiferromagnetic spin coupling is capable of
facilitating spin-singlet pairing the energy dispersion ε∓

∓ (k,↑)
�= ε∓

∓ (−k,↓) is unfavorable for the spin-singlet pairing for-
mation, as in single-layer AM.

Finally, the energy dispersion relation for the AB stacking
configuration with SA(l = 1) = SB(l = −1) is given by

ε∓
∓ (k, σ ) = εA+B(k) ∓

√
ε2

A−B(k) + ξ 2∓(k), (25)

with

ξ 2
∓(k) = ε2

AB(k) + t2
⊥ + h2

∓ 2
√[

ε2
A−B(k) + t2

⊥
]
h2 + ε2

AB(k)t2
⊥. (26)

The stacking restores T symmetry, thereby resulting in
ε∓
∓ (k,↑) = ε∓

∓ (−k,↓) and the energy dispersion that is in-
dependent of spin. The electronic structure is capable of
supporting both spin singlet and triplet Cooper pairing be-
tween layers. However, the ferromagnetic interlayer spin
fluctuations selectively enhance spin-triplet pairing between
layers.

IV. DISCUSSION AND CONCLUSION

In our model, we have ignored the spin-orbit coupling
(SOC), electron-phonon interaction, long-range interlayer
coupling, and twist angle between the layers. Although omit-
ting SOC is a simplification often made in both the Hubbard
and t − J models the SOC breaks parity symmetry and
could induce a mixture of spin singlet and triplet pairing
and reconstruction of the Fermi surface. Electron-phonon
interaction could be conducive to the SC pairing. Consider-
ing the experimental realization of the 2D single-layer and
stacked AM models, a direct method is to exfoliate single or
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double layers from these crystals and artificially assemble
the sheets. Presently, more than a dozen AM candidates have
been suggested [2]. The crystals with planar spin-momentum
locking, such as La2CuO4, FeSb2, KRu4O8, RuO2, MnO2,
and MnF2, are the optimal candidates for exfoliating and
assembling operations.

To summarize, our study has investigated the energy dis-
persion in both single and stacked layer AM materials. Using
a 2D anisotropic Hubbard model, we have analytically derived
the general energy dispersions using the mean field method.
In the single AM sheet, due to T symmetry broken, the
energy dispersion is spin-polarized and only spin-triplet SC
is favored. In contrast, the spin fluctuations typically favor
spin-singlet pairing, as the AM order often slightly deviates
from that in AFM. The discord between electronic structure
and pairing interaction hinders SC formation in AM. Thus
we demonstrate that stacking AM sheets could change the
original symmetries present in the monolayer and interlayer
magnetic coupling can enhance the low q spin fluctuations.
The stacking could make both the electronic structure and spin
fluctuations favor the formations of SC including spin singlet

and triplet pairings, depending on stacking patterns. In the
twisted bilayer AM layers, the unit cell expands, complicating
the interlayer coupling which becomes spatially dependent
rather than uniform. We further propose that twisted bilayer
AM sheets could give rise to additional novel electronic prop-
erties, such as topology, flat bands, and collective excitations.
Our work indicates that stacking sheets of AM materials could
provide a unique platform for exploring new quantum phe-
nomena. Modifying the electronic properties by turning the
twist angle between AM sheets could lead to the development
of novel electronic devices.
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