scitation.org/journal/apl

Export Citatio

Perspective on the pressure-driven evolution of the lattice and electronic structure in perovskite and double perovskite P

Cite as: Appl. Phys. Lett. **117**, 080502 (2020); doi: 10.1063/5.0014947 Submitted: 22 May 2020 · Accepted: 9 August 2020 · Published Online: 26 August 2020

Nana Li, 🝺 Qian Zhang, Yonggang Wang, 🝺 and Wenge Yang^{a)} 🝺

AFFILIATIONS

Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China

^{a)}Author to whom correspondence should be addressed: yangwg@hpstar.ac.cn

ABSTRACT

Perovskite ABO_3 as one of the most common structures has demonstrated great structural flexibility and electronic applications. Evolving from perovskite, the typical double perovskite $A_2BB'O_6$ has two element species (B/B'), where the ordered arrangements of BO_6 and $B'O_6$ octahedron provide much more tunability. Especially, by applying external pressure, the energetic order between different phases in perovskite and double perovskite materials can be notably modified with more fascinating physical properties. However, it is still a challenge to propose a general model to explain and predict the high-pressure structures and properties of various perovskites and double perovskites due to their flexibility and complexity. In this perspective, we will discuss pressure effects on the crystalline structure and electronic configurations in some perovskites and double perovskites. We then focus on a prediction method for the evolution of the lattice and electronic structure for such materials with pressure. Finally, we will give a perspective on current challenges and opportunities for controlling and optimizing structural and electronic states of a given material for optimized functionalities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014947

Perovskite-type (Pv) oxides ABO3 and double perovskite-type (dPv) oxides A₂BB'O₆ possess a wide variety of both scientifically and commercially physical properties depending on the choice of the constituting elements.¹⁻⁸ The ideal ABO3 perovskite structures have a cubic symmetry, consisting of a framework of corner-sharing BO₆ octahedra with the A-type cation in each resulting cub-octahedral interstice and forming AO_{12} dodecahedron, as shown in Fig. 1(a). Double perovskite-type oxide $A_2BB'O_6$ is the evolution of ABO₃ in which the B site is occupied with two different atoms B/B', and BO₆ and B'O6 octahedral alternated with A atoms occupying the interstitial spaces, as shown in Fig. 1(b). The ordered arrangements of BO₆ and B'O₆ octahedron provide much more tunability on physical properties. For example, the double perovskite Sr₂FeMoO₆ shows the roomtemperature magnetoresistance, promising for the development of ordered perovskite magnetoresistive devices that are operable at room temperature.⁹ Lead free double perovskite La₂NiMnO₆ is a new promising material for photovoltaic applications.¹

To accommodate different sizes of A and B/B' cations, most Pv and dPv present flexible structures by rotation or tilting of the $B(B')O_6$ octahedrons,¹¹⁻¹⁶ as shown in Fig. 1. The stability of the Pv and dPv structures for the different A and B/B' constituents is commonly discussed in terms of the Goldschmidt's tolerance factor (τ as defined below):^{11,17}

$$\tau_{Pv} = (r_A + r_O) / \left(2^{1/2} (r_B + r_O) \right), \tag{1}$$

where r_A , r_B , $r_{B'}$, and r_O are the ionic radii of the respective ions calculated from Shannon's ionic radii.¹⁸ Ideal cubic perovskites usually hold τ value between 0.95 and 1.0 such as CaSiO₃ ($\tau_{P\nu} = 0.99$) at room temperature and ambient pressure (RTAP).¹³ When 0.75 $< \tau_{P\nu} < 0.95$, the Pv is distorted to orthorhombic, such as REFeO₃ (RE = rare earth, $\tau_{P\nu} \sim 0.90$).¹⁴ There are also various hexagonal non-Pv phases known with the ABO₃ stoichiometry and $\tau_{P\nu} > 1$.^{15,16} For dPv, the situation gets more complicated. The structure shows a huge difference even with a similar $\tau_{dP\nu}$ value. For instance, $\tau_{dP\nu}$ is 0.9789 for Ba₂YIrO₆ with a cubic structure, while the $\tau_{dP\nu}$ is 0.9792 for Sr₂ZnWO₆ with a tetragonal structure at RTAP.^{19,20} In some cases, the dPv has the cubic structure at RTAP when the $\tau_{P\nu} > 1$. For example, $\tau_{dP\nu}$ is 1.0380 and 1.0351 for ideal cubic Ba₂MgWO₆ and Ba₂ZnWO₆, respectively.²¹ It was caused by the multiple element combinations at A and B/B' sites.

FIG. 1. The schematic representation of the crystal structure for perovskite (a) and double perovskite (b).

The distortions from the cubic symmetry give rise to changes in the physical properties that are important for the Pv and dPv applications.^{22,23} For example, the intrinsic TiO₆ local bonding distortion and octahedral tilting in CaTiO₃ perovskite-based materials can modify intermediate energy states within the bandgap and associated photoluminescence emission profile.²² Also, the high- T_c ferrimagnetism in Ca₂FeOsO₆ was driven by lattice distortion, which represents complex interplays between spins and orbitals.²³ Besides, as the predominant phase of the lower mantle and the most abundant mineral in Earth, the study on the orthorhombic (Mg,Fe)SiO₃ perovskite under extreme pressure and temperature leads to the discovery of the post-perovskite structure, which is considered as one of the most important events at the Earth's core–mantle boundary.^{24,25}

The lattice distortion can be induced by many means. Among them, the external high pressure has been considered as a cleaner tool compared to other methods since it acts only on interatomic distances, which in turn modifies the material's mechanical and electronic properties.²⁶⁻³⁸ For example, the pressure-induced magnetoelectric phase transition and the largest ferroelectric polarization among spin-driven ferroelectrics were reported in TbMnO₃.²⁹ Pressure-induced polymorphism and piezochromism were also studied in double perovskite Mn₂FeSbO₆.³⁷ KNbO₃ transformed from a ferroelectric orthorhombic Cm2m phase to another ferroelectric tetragonal P4mm phase at 7.0 GPa and then to a paraelectric cubic Pm3m phase at about 10.0 GPa.³⁹ Additionally, pressure can also redistribute the charge and melt the charge ordering via the structural phase transition. For example, at ambient pressure, BiNiO3 crystallizes in the insulating phase (space group: P-1) with two ordered Bi valence (Bi³⁺, Bi⁵⁺) and Ni²⁺ valence occupation (Bi³⁺_{0.5}Bi⁵⁺_{0.5}Ni²⁺O₃). At high pressure, by melting the charge ordering and disproportionation, the high-pressure phase (space group: Pbnm) turns to be metallic with different valence state (Bi³⁺Ni³⁺O₃).^{38,40} What's more, in earth science, the structural properties of mantle phases, such as post-perovskite (Mg,Fe)SiO₃ under high pressure, are very important for understanding the enigmatic seismic features observed in the Earth's lower mantle down to the core-mantle boundary.41-44 The ferromagnesian silicate [(Mg,Fe)SiO₃] with nominally 10 mol. % Fe was found unstable under 95-101 GPa and 2200-2400 K and dissociated into an Fe poor

orthorhombic phase and an Fe rich hexagonal phase, which suggests that the lower mantle may contain previously unidentified major phase. $^{\rm 43}$

The structures of the Pv and dPv typically evolve in two ways under high pressure without breaking the polyhedron framework: tilting of the $B(B')O_6$ octahedra and polar cation displacement inside the $B(B')O_6$ or AO_{12} polyhedra.^{45–51} For example, BiFeO₃ undergoes a phase transition at 3 GPa from a rhombohedrally distorted perovskite to a distorted monoclinic structure by the superimposition of tilts and cation displacements, and subsequent structural phase transition above 10 GPa from the distorted monoclinic structure to the nonpolar orthorhombic *Pnma* structure, as characterized by the cation displacements.^{50,51}

For perovskite, there are several rules proposed to predict and explain the structural behavior under high pressure.^{52–59} Based on the bond valence mechanism, Zhao et al. proposed that the AO12 dodecahedra are expected to be significantly more compressible than the BO₆ octahedral in orthorhombic perovskites, with both A and B cations having the formal charge +3 (3:3 perovskites) and the highersymmetry structure should be expected at high pressure, but for perovskites with a +2 cation at the A site and a +4 cation at the octahedral B site (2:4 perovskites), they are predicted to become more distorted with pressure.⁵⁴ A majority of ABO₃ perovskites with non-magnetic elements at B site follows Zhao's rule.^{60–64} For example, the distortion in the CaO₁₂ and SnO₆ polyhedra and the octahedral SnO₆ tilting is attributed to the less compressible SnO₆ octahedron than CaO₁₂ dodecahedron in site in CaSnO₃ (2:4 perovskite).⁶³ Also, they gave a general rule based on the ratios of the compressibility (M_A/M_B) of the AO_{12} and BO_6 polyhedra.⁵⁴ If $M_A/M_B > 1$, a transition to a highersymmetry phase is expected under high pressure, whereas the opposite should occur when $M_A/M_B < 1$. For LaAlO₃, which has $M_A/M_B > 1$, its AlO_6 octahedra are therefore more compressible than the LaO_{12} sites and it undergoes a rhombohedral-to-cubic phase transition around 14 GPa.6

There are some exceptions like the strongly correlated systems that have strong electronic configuration effects under high pressure, such as Jahn-Teller (JT) systems.⁶⁵⁻⁷² For example, LaMnO₃ with an orthorhombic structure shows a complex behavior caused by the delocalization of electron states, which suppresses the JT effect of the MnO₆ octahedron but is insufficient to make the system metallic under high pressure.⁶⁷ It undergoes a transition to an unknown phase around 70 kbar because of the closing of the JT gap: the ionic Mn³⁺ species disappear and the system evolving toward a metallic-like phase is reached.⁷⁰ Another research also found that the total removal of the local JT distortion would occur only for pressures around 30 GPa in LaMnO₃, where metallization is reported to take place.⁷¹ Besides, multiferroic material BiFeO3, which has the strong tilt and polar distortions at room temperature, also exhibits a complex phase transition at high pressure caused by the changes in octahedron tilts and displacements of Bi³⁺ and Fe³⁺ cations.^{50,51,72} Through absorption crystal-field spectroscopy, the linear redshift of both $4T^1$ and $4T^2$ Fe³⁺ bands was induced by high pressure, consistent with the compression of the FeO₆ octahedron under pressure.⁷² Also, Fe³⁺ off-center displacements in FeO₆ still persist in the high-pressure phase (Pnma) for $BiFeO_3$.⁷² In addition, REFeO₃ perovskites (RE = rare earth) show a spin transition of Fe³⁺ from high spin (HS) to low spin (LS) accompanied by a large volume collapse.^{68,73} Therefore, the structure

configurations in strongly correlated perovskites will be more complex caused by the correlation between the lattice and electronic structures under high pressure.

How about dPvs, what's the general rule to predict the structural change for such materials under high pressure? Based on the element species, we divide dPvs into two types: One is the "weakly correlated electronic" (WCE) dPv in which the electronic structure does not strongly affect the lattice, and $B(B')O_6$ octahedra and AO_{12} polyhedra play a major role in determining distortions of the cation sites; the other is the "strongly correlated electronic" (SCE) dPv in which the lattice is strongly coupled with the spin, orbital, and valence. In this part, we try to explore whether there is a general rule to guide the structural change for WCE dPv under high pressure.

Because of the distribution in the valence state, a majority 4:8 dPv with a +2 alkali metal cation at the A site and a total +8 cation at the octahedral B and B' sites are WCE dPv. Several high-pressure works have reported on such WCE dPv.^{74–83} Basically, WCE dPvs tend to transform to a lower symmetry structure with the lattice distortion under high pressure, as shown in Fig. 2(a). For example, Ba₂YTaO₆ undergoes a structural phase transition from cubic to tetragonal with the onset of an octahedral tilting distortion about the *c* axis under high pressure.⁷⁴ Also, Ba₂BiTaO₆ transforms from rhombohedral with out-of-phase tilts about the [111] axis to the monoclinic structure with the [110] axis tilting around 4 GPa.⁷⁵ Experimental and theoretical studies on Sr₂CrReO₆ show a phase transition from cubic to tetragonal structure around 9 GPa.⁷⁶ Besides, Sr₂CoWO₆,

FIG. 2. (a) The schematic representation of the lattice distortion for WCE dPv under pressure. (b) Structure evolution of certain WCE double perovskites under pressure with different tolerance factors τ_{dPv} .

 $\rm Sr_2CaWO_6$, and even Pb_2CoTeO_6 all show the structural phase transition toward a lower symmetry under high pressure. $^{77-79}$ In our previous work, we studied the structural phase transition of $\rm Sr_2ZnWO_6$ under high pressure. 80 It also turns to a lower symmetry from monoclinic to triclinic at 9 GPa induced by the increasing of the distortion in the Zn(W)O_6 octahedron. Studies on other 4:8 WCE dPvs under high pressure have the similar trend to lower symmetry and more distortion of lattice. $^{80-83}$

As summarized in Fig. 2(b), Sr₂ZnTeO₆⁸¹ and Sr₂NiWO₆ (unpublished) remain stable up to 31 GPa with their ambient tetragonal structure. Both Ba2MgWO6 and Sr2MgWO6 also remain in their original phase under high pressure.⁸² Let us take a look at the effect of one B site radius in Sr₂BWO₆ series: among Sr₂MgWO₆, Sr₂ZnWO₆, Sr₂CoWO₆, and Sr₂CaWO₆, Mg²⁺ has the smallest radius 0.72 Å, while Zn^{2+} , Co^{2+} , and Ca^{2+} have a larger radius as 0.74 Å, 0.75 Å, and 1.00 Å, respectively.¹⁸ Sr₂BWO₆ (B = Zn, Co, and Ca) all undergo a structural phase transition at a pressure below 13 GPa, but Sr₂MgWO₆ remains in the ambient structure up to 31 GPa. We can conclude that the smaller B ion can keep the ambient structure sustainable to higher pressure. There has no enough data to compare the effect of the A site radius. However, we adopt the tolerance factor $(\tau_{dP\nu})$ defined in Eq. (2) to quantitatively check the structure stability under pressure, in which we can simultaneously consider both A and B site radii. We draw a high-pressure structure diagram of some WCE double perovskites with their τ_{dPv} as shown in Fig. 2(b). The larger the value of τ_{dPv} the more stable the structure under high pressure. In contrast, with the smaller value of τ_{dPv} , the lattice is more prone to show the structural phase transition to low symmetry under high pressure. The smaller ion radius at the A site with small τ_{dPv} produces more space for the distorted $B(B')O_6$ octahedron under high pressure. For the smaller ion radius at the B(B') site with a large τ_{dPv} value, it is easier to compress the $B(B')O_6$ octahedron and keep the lattice stable under high pressure. Therefore, the smaller the ion radius at the A site and the larger the ion radius at the B(B') site, the much easier it is for such double perovskites to show a structural phase transition to lower symmetry under high pressure. In contrast, the larger the ion radius at the A site and the smaller the ion radius at the B(B') site, the crystal structure of such double perovskite is easier to remain stable.

For perovskite predicting models at high pressure, there are not only qualitative but also quantitative method, which shows the detailed distortion of perovskite structures as a function of pressure. There are some excellent works that have been successfully applied to some perovskites, such as CaTiO₃, CaSnO₃, and MgSiO₃.^{54,84} For WCE dPv, we try to build a simple model for quantitatively investigating the lattice evolution at high pressure, only using ambient-pressure crystal structure data and the unit-cell parameters. First, we introduced a modified factor: the local instability index (LII), which is derived from the bond valence sums at the cation sites alone:⁸⁴

$$LII = \left[\frac{(\Delta V_A)^2 + (\Delta V_B)^2 + (\Delta V_{B'})^2}{3}\right]^{1/2},$$
(3)

where ΔV_A , ΔV_B , and $\Delta V_{B'}$ are the difference of the bond valence sums at the cation sites for the fractional atomic coordinates of a model structure at pressure *P* and the ambient-pressure structure at ambient pressure.⁸⁴ ΔV_A , ΔV_B , and ΔV_B can be obtained by SPuDS program.⁸⁵

Here, we used "fixed coordinate" model to calculate the *LII* values under high pressure for such dPv, which are only based upon the

knowledge of the ambient-pressure structure and the unit-cell parameters at high pressures. The *LII* values at high pressure for some WCE dPv are shown in Fig. 3(a). Obviously, the *LII* values all become greater with increasing pressure for such dPv whether the samples have phase transition or not. Hereupon, we define a new factor "compromise instability index" (*CII*), which is derived from the difference of the bond valence sums in A and B/B' sites,

$$CII_{i} = \left(V_{Bi}(\text{calc}) - V_{B}(\text{ox}) \right)^{2} + \left(V_{B'i}(\text{calc}) - V_{B'}(\text{ox}) \right)^{2} - 4* \left(V_{Ai}(\text{calc}) - V_{A}(\text{ox}) \right)^{2},$$
(4)

where Vi(ox) is the formal valence (equal to its oxidation state) and Vi(calc) is the calculated bond valence sum for the A, B, and B' ions at

FIG. 3. (a) The change of *LII* values of Ba_2MgWO_6 , Ba_2YTaO_6 , Sr_2CoWO_6 , Sr_2NiWO_6 , and Sr_2ZnWO_6 under high pressure. (b) is the pressure dependence of *CII* for Ba_2MgWO_6 , Sr_2MgWO_6 , and Sr_2NiWO_6 . (c) is the pressure dependence of *CII* for Sr_2ZnWO_6 , Ba_2YTaO_6 , and Sr_2CoWO_6 .

pressure *Pi*. *Vi*(*calc*) can be obtained by SPuDS program⁸⁵ using the "fixed coordinate" model.

Then, we gave the CII values with pressure for those WCE dPvs, as shown in Figs. 3(b) and 3(c). The compromise instability index CII is more inclined to decrease (dCII/dP < 0) for WCE dPv, which has no structural phase transition under high pressure; in contrast, CII is more inclined to increase (dCII/dP > 0) for WCE dPv, which has structural phase transition under high pressure. For Ba2MgWO6, Sr₂MgWO₆, and Sr₂NiWO₆ in which the crystal structure is stable within the pressure range of the study, CII decrease with increasing pressure. However, CII increases with pressure for Sr₂ZnWO₆ and Ba₂YTaO₆, in which the structural phase transition occurs around 10 GPa and 5 GPa, respectively. For Sr₂CoWO₆, it shows two structural phase transitions around 2 GPa and 12 GPa. Although CII decreases in the intermediate pressure range of two phase transitions, it still increases near the phase transition point. Therefore, the compromise instability index CII can be used as an important parameter to judge whether there is phase transition or not for WCE dPv at high pressure.

In the strongly correlated electronic (SCE) Pv and dPv in which the lattice is strongly coupled with the spin, orbital, or valence, the high-pressure behaviors become more complicated.⁸⁶⁻⁹¹ It will induce more significant physical properties such as the charge transfer, insulator-to-metal transition, magnetic transition, and even non-fermi liquid behavior. For instance, Ba2PrRu08Ir02O6 shows an unusual lattice change under high pressure, in which a structural phase transition from monoclinic to tetragonal is driven by the charge transfer from \mbox{Pr}^{3+} to \mbox{Pr}^{4+} with pressure. 91 Besides, compression on $\mbox{Sr}_2\mbox{FeOsO}_6$ drives an unexpected transition from the antiferromagnetic to ferrimagnetic order, accompanied by the lattice stable up to 56 GPa.^{92,93} It was caused by the increase in the crystal-field splitting at Os⁵⁺ sites rather than by bending of the Fe-O-Os bonds.^{92,93} What's more, the magnetic transition temperature is largely and slightly enhanced for Ba₂FeMoO₆ and Sr₂FeMoO₆, respectively.⁸⁶ Sr₂FeMoO_s also shows a metal-insulator transition caused by the compression of the unit cell around 2.1 GPa.⁸⁷ Especially, PrNiO₃ shows an insulator to metal transition with the transforming to a non-Fermi-liquid phase with pressure, which is caused by both lattice and spin fluctuations where the transition temperature $T_{IM} = T_N$ is terminated.⁹⁴ The similar phenomenon was also discovered in other $RENiO_3$ (RE = rare earth) at high pressure.9

The transition metals, such as Fe³⁺/Fe²⁺ and Mn³⁺ in SCE systems, show novel and interesting high-pressure behaviors because of the correlation among the lattice, spin, and orbital, which leads to strong modification on the magnetic, electronic, optical, and other properties in the corresponding systems. Especially, the pressureinduced spin transition occurred from high spin to low spin for such transition metal largely correlates with the lattice and electronic properties. For instance, in LaFeO₃, the spin transition of Fe³⁺ accompanied by the lattice collapse occurs at around 50 GPa.⁶⁷ Concurrent of the HS to LS transition and lattice collapse during structural phase transition has been observed in other systems.96 Also, they show some interesting pressure-induced spin crossover phenomenon that have not been discovered yet in perovskite and double perovskite oxides. For instance, the spin crossover of Fe²⁺ can induce the superconducting in FePSe₃ under high pressure.⁹⁶ What's more, a high-tolow spin crossover of Fe^{2+} in CuFeS₂ is manifested along with the structural phase transition and a surprising n-type semiconductor to

p-type semiconductor transition with pressure.⁹⁸ The study and prediction on the pressure-induced spin crossover of dPv oxides can give an opportunity to produce such unusual electronic states and interesting physical properties.

In this part, we mainly discuss the correlation between the lattice and spin configurations in SCE dPv under high pressure. In general, the spin crossover in these transition metals is caused by the *d*-orbital splitting with pressure. We gave a schematic *d*-orbital splitting diagram of Fe³⁺ in the FeO₆ octahedra under high pressure, as shown in Fig. 4(a). The net spin magnetic moment of transition metals in the B(B')O₆ octahedron in SCE double perovskites is mainly controlled by the competition between the crystal-field splitting Δ_{cf} (favorite for the LS state) and the intra-atomic Hund's exchange term J (favorite for the HS state). Δ_{cf} is sensitive to external pressure, which will promote the crystal field splitting and then induce the spin transition of such ions and finally strongly influence the electronic and magnetic properties of SCE dPv. For Sr₂FeMoO₆, a spin crossover of Fe ion from high-spin to low-spin state is found accompanied by a transition from the ferrimagnetic half-metallic to nonmagnetic semiconductor state.87 Another

FIG. 4. (a) A schematic *d*-orbital splitting diagram for Fe^{3+} in the FeO_6 octahedra with pressure. (b) The high-pressure behavior of La_2FeMnO_6 ,⁹⁹ LaFeO₃,⁶⁸ and LaMnO₃.⁶⁷ For LaMnO₃, reproduced with permission from Loa *et al.*, Phys. Rev. Lett. **87**, 125501 (2001).⁶⁷ Copyright 2001 American Physical Society. For LaFeO₃, reproduced with permission from Xu *et al.*, Phys. Rev. B **64**, 094411 (2001).⁶⁸ Copyright 2001 American Physical Society. For La₂FeMnO₆, reproduced with permission from Li *et al.*, Phys. Rev. B **99**, 195115 (2019).⁹⁹ Copyright 2019 American Physical Society.

theoretical study on La₂VMnO₆ shows that Mn³⁺ experiences a transition from the high spin state $(t_{2g}^{3}e_{g}1)$ to low spin state (t_{2g}^{4}) , making La₂VMnO₆ a half-metallic ferrimagnet accompanied by the volume collapse under some critical pressure.⁸⁹

To date, most studies of double perovskites have only one transition metal involved in spin transition. How about the interplay of double-spin crossover with two transition metals? Is there a possible charge transfer involving in the double-spin crossover to minimize the overall energy? To check all these questions, we studied the high-pressure structure of La₂FeMnO₆, and monitored the spin and valence status of Fe and Mn at the B-site.⁹⁹ Unlike LaMnO₃ and LaFeO₃,^{67,68,100} La₂FeMnO₆ shows a double-spin crossover behavior under high pressure. The strong coupling between Fe and Mn leads to a combined valence/spin transition: Fe³⁺(S = 5/2) \rightarrow Fe²⁺(S = 0) and Mn³⁺(S = 2) \rightarrow Mn⁴⁺(S = 3/2), with an isostructural phase transition under high pressure, as shown in Fig. 4(b).

However, in La₂FeMnO₆, the randomly distributed Fe/Mn leads to a "diffuse pressure-induced phase transition," a structural transformation over a broad pressure range, without a well-defined critical pressure point. So both lattice and spin transitions spread out over a large pressure range with different configurations at each pressure stage in La₂FeMnO₆. This phenomenon is not conducive to the practical application of such a material because of the broad pressure range for the structural transformation. To avoid this problem, we can design an ordered B/B' site in dPv and choose different transition metal combinations such as Fe/Co, Co/Mn, and Co/Cr that may undergo a double spin transition, and the pronounced spin-orbit coupling between two transition metals may provide more options for designing novel spintronic materials with tailored properties.¹⁰¹⁻¹ For instance, the theoretical studies on Sr_2FeCoO_6 show that $Co^{4+}/$ Fe⁴⁺ in the high spin states can lead to its metallicity and ferromagnetism.¹⁰¹ Then, the spin transition of Co⁴⁺/Fe⁴⁺ will give a huge change in their electronic and magnetic properties with pressure. Besides, the system will become more complex if the $B(B')O_6$ octahedra involve orbitally degenerate transition metal ions (B/B': Cu²⁺, Cr²⁺, Fe²⁺, Mn³⁺, Ni³⁺, or Co³⁺). The JT coupling induces low-symmetry $B(B')O_6$ distortions, which are eventually responsible for the striking properties related to both the orbital ordering and JT distortion.¹⁰² For instance, JT distortions of the MnO₆ octahedra in La_{0.85}MnO_{3-δ} will induce the reduction in the metal-insulator transition temperature at high pressure. 103 Also, the coherence length of the JT distortions in La3/4Ca1/4MnO3 induced a structural modification with high pressure.¹⁰⁴ In RENiO₃, the localized electrons of Ni undergo a cooperative JT distortion but stronger Ni-O bonding in alternate NiO_{6/2} octahedra creates molecular e orbitals within the more strongly bonded clusters.¹⁰⁵ All these induce the approach to crossover to itinerant-electron behavior from the localized-electron side.¹⁰⁵ Besides, high-pressure research on Cu²⁺ and Mn³⁺ showed that JT distortion reduced upon compression and is eventually suppressed at pressures above $20 \text{ GPa.}^{67,102-106}$ If we combine the transition metals in B/B', which contains both JT distortion and spin crossover, it will induce amazing physical properties at high pressure. For instance, the intermediate spin states of Mn³⁺/Co³⁺ can lead to JT distortions where the JT ion will have a single e_{σ} electron and the double degeneracy of e_{σ} state will be lifted with pressure. This will lead to itinerant behavior of the single electron, which will contribute to the magnetic and transport properties.^{107,1}

Here, we established a general rule among the tolerance factor τ , compromise instability index *CII* and the stability of the crystal structure in the 4:8 WCE double perovskites under high pressure. The correlation among the lattice and spin in some SCE dPvs was discussed comprehensively.

For Pv and dPv with polar non-centrosymmetric, ferroelectrics has been extensively studied for potential applications in room-temperature pyroelectric infrared detectors and electronic and photonic devices.^{109–111} Currently, the pressure effect is still not quite clear. For instance, what is the major contribution from the octahedral tilting and the polar cation displacements with pressure, and whether the ferroelectricity can be indeed enhanced or reappeared at high pressure for such materials? Further research is needed on the evolution of the lattice correlated with the electronic structure for such Pv and dPv under high pressure.

This review only involves two types of structures: ABO₃ or A₂BB'O₆. Oxygen-deficiency in Pv and dPv could provide another way to modify the structure and valence status, and their pressure responses. One typical oxygen-deficient perovskite $A_2B_2O_5$ differs in the ordering patterns of anion vacancies. These compounds crystallize in the brownmillerite-type (B-type) structure consisting of alternating layers of corner-sharing BO₆ octahedra and corner-sharing BO₄ tetrahedral, as shown in Fig. 5(a).

Under high pressure, the B-type structure prefers to transform to the perovskite-type (P-type) structure because of the breaking and forming of B-O-B bonds in the octahedral and adjacent tetrahedral B-O layers of the brownmillerite-type structure. For example, Sr₂Fe₂O₅ shows a structural phase transition from the B-type structure (space group Ibm2) to a tetragonal perovskite-like structure with oxygen-deficient at 15 GPa, while SrFeO3 remains in its cubic structure up to 56 GPa.¹¹²⁻¹¹⁴ One can directly synthesize the tetragonal perovskite-like structure of Sr₂V₂O₅ with a large volume press under high pressure and temperature conditions (unpublished). The tetragonal phase of Sr₂V₂O₅ can sustain a pressure of up to 40 GPa. Another high-pressure study on Ca2Fe2O5 shows that it remains B-type structures up to 10 GPa.¹¹⁵ We predict that it will transform to the perovskite-like structure with a higher pressure. However, further experiments are called in to confirm these predictions. The equations of state for CaFeO_{2.5}, SrVO_{2.5}, SrFeO_{2.5}, and SrFeO₃ are displayed in Fig. 5(b) for comparison.

Double perovskite can be derived to other forms such as AA'₃B₄O₁₂-type and AB_{2/3}B'_{1/3}O₃-type according to the different atomic ratios in the A or B site. For example, the A-site-ordered double perovskite LaCu₃Fe₄O₁₂ adopts a cubic structure, where the Cu ions at the A site make the square-planar AO4 units and the Fe ions at the B site form corner-sharing BO₆ octahedra.^{116,117} Under external pressure, a phase transition occurs along with a significant volume collapse and charge transfer between Cu and Fe, which leads to a surprising electric/magnetic property change from an antiferromagnetic insulating state to a paramagnetic metallic state.¹¹⁷ In₃Cu₂VO₉ with AB_{2/3}B'_{1/3}O₃ type adopts the honeycomb-lattice structure, which consists of alternating layers of InO_6 octahedra, and Cu^{2+} and V^{5+} ions in the trigonal-bipyramidal coordination.¹¹⁸ In the new cuprate La₄Cu₃MoO₁₂, the Cu and Mo are coordinated by O in the cornersharing trigonal bipyramids that are sandwiched between layers of lanthanum cations.¹¹⁹ In these specific derivative double perovskites, the transition metals can occupy the lattice in very rich ways, which may

FIG. 5. (a) The structure changes from the brownmillerite (B)-type structure to the perovskite (P)-like structure for $A_2B_2O_5$ under high pressure. Half-red O atoms have an occupancy of 1/2 in the perovskite (P)-like structure. (b) The volume of a primitive perovskite-type unit cell as a function of pressure for Ca₂Fe₂O₅,¹¹⁵ Sr₂V₂O₅, Sr₂Fe₂O₅, Sr₂Fe₂O₅, Tre² and SrFeO₃.¹¹⁴ For Sr₂Fe₂O₅, reproduced with permission from Adler *et al.*, J. Solid State Chem. **155**, 381–388 (2000).¹¹² Copyright 2000 Elsevier. For SrFeO₃, reproduced with permission from Kawakami *et al.*, J. Phys. Soc. Jpn. **72**, 33–36 (2003).¹¹⁴ Copyright 2003 Physical Society of Japan. For Ca₂Fe₂O₅, reproduced with permission from Ross *et al.*, Phys. Earth Planet. Inter. **129**, 145–151 (2002).¹¹⁵ Copyright 2002 Elsevier.

induce more advanced mechanical and electronic properties under high pressure. However, the high-pressure research on such complexed derivative double perovskites is still rare. It is still a challenge task to fully understand the mechanism of the lattice evolution with the electronic configuration of such dPv under high pressure and optimize the functionality and achieve the intriguing properties.

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U1930401, 51527801, and 51772184).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

¹S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, and M. Bibes, Nat. Mater. 10, 753–758 (2011).

- ²L. H. Yin, J. Yang, R. R. Zhang, J. M. Dai, W. H. Song, and Y. P. Sun, Appl. Phys. Lett. **104**, 032904 (2014).
- ³S. Sharma, J. Saha, S. D. Kaushik, V. Siruguri, and S. Patnaik, Appl. Phys. Lett. 103, 012903 (2013).
- ⁴J. Cong, K. Zhai, Y. Chai, D. Shang, D. D. Khalyavin, R. D. Johnson, D. P. Kozlenko, S. E. Kichanov, A. M. Abakumov, A. A. Tsirlin, L. Dubrovinsky, X. Xu, Z. Sheng, S. V. Ovsyannikov, and Y. Sun, Nat. Commun. 9, 2996 (2018).
- ⁵A. Maignan, C. Martin, O. Lebedev, J. Sottmann, L. Nataf, F. Baudelet, S. Hébert, and R. E. Carbonioc, Chem. Commun. 55, 5878–5881 (2019).
- ⁶Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, and J. Juuti, Appl. Phys. Lett. 110, 063903 (2017).
- ⁷J. Cai, C. Wang, B. Shen, J. Zhao, and W. Zhan, Appl. Phys. Lett. **71**, 1727 (1997).
- ⁸Y. Du, Z. X. Cheng, S. X. Dou, X. L. Wang, H. Y. Zhao, and H. Kimura, Appl. Phys. Lett. **97**, 122502 (2010).
- ⁹K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677–680 (1998).
- ¹⁰ M. S. Sheikh, D. Ghosh, A. Dutta, S. Bhattacharyya, and T. P. Sinha, Mater. Sci. Eng.: B **226**, 10–17 (2017).
- ¹¹V. M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926).
- ¹²D. Yang, W. Wang, T. Yang, C. I. Lampronti, H. Ye, L. Wu, Q. Yu, and S. Lu, APL Materials 6, 066102 (2018).
- ¹³L. Liu and A. E. Ringwood, Earth Planet. Sci. Lett. 28, 209–211 (1975).
- ¹⁴A. Wu, G. Cheng, H. Shen, J. Xu, Y. Chu, and Z. Ge, Asia-Pac. J. Chem. Eng. 4, 518–521 (2009).
- ¹⁵G. Blasse, J. Inorg. Nucl. Chem. **27**, 993–1003 (1965).
- ¹⁶S. Vasala and M. Karppinen, Prog. Solid State Chem. 43, 1–36 (2015).
 ¹⁷M. W. Lufaso and P. M. Woodward, Acta Crystallogr., Sect. B 60, 10–20
- ¹⁸R. D. Shannon, Acta Crystallogr., Sect. A **32**, 751–767 (1976).
- ¹⁹T. Dey, A. Maljuk, D. V. Efremov, O. Kataeva, S. Gass, C. G. F. Blum, F. Steckel, D. Gruner, T. Ritschel, A. U. B. Wolter, J. Geck, C. Hess, K. Koepernik, J. van den Brink, S. Wurmehl, and B. Büchner, Phys. Rev. B 93, 014434 (2016).
- ²⁰D. D. Khalyavin, A. M. R. Senos, and P. Q. Mantas, Powder Diffr. 19, 280–283 (2004).
- ²¹D. E. Bugaris, J. P. Hodges, A. Huq, and H. C. Zur Loye, J. Solid State Chem. 184, 2293–2298 (2011).
- ²²M. L. Moreira, E. Pairs, G. S. do Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B. Bernardi, J. Andrés, J. A. Varela, and E. Longo, Acta Mater. 57, 5174–5185 (2009).
- ²³H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Guo, C. I. Sathish, X. Wang, Y. H. Yuan, M. Tanaka, and K. Yamaura, J. Am. Chem. Soc. 136, 3326–3329 (2014).
- ²⁴E. Knittle and R. Jeamloz, Science 235, 668–670 (1987).
- ²⁵G. Serghiou, A. Zerr, and R. Boehler, <u>Science</u> **280**, 2093–2095 (1998).
- ²⁶J. Oliveira, J. Agostinho Moreira, A. Almeida, V. H. Rodrigues, M. M. R. Costa, P. B. Tavares, P. Bouvier, M. Guennou, and J. Kreisel, Phys. Rev. B 85, 052101 (2012).
- ²⁷D. A. Mota, A. Almeida, V. H. Rodrigues, M. M. R. Costa, P. Tavares, P. Bouvier, M. Guennou, J. Kreisel, and J. A. Moreira, Phys. Rev. B **90**, 054104 (2014).
- ²⁸M. C. Weber, M. Guennou, H. J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J. A. Moreira, and J. Kreisel, Phys. Rev. B 94, 214103 (2016).
- ²⁹T. Aoyama, K. Yamauchi, A. Iyama, S. Picozzi, K. Shimizu, and T. Kimura, Nat. Commun. 5, 4927 (2014).
- 30T. Aoyama, A. Iyama, K. Shimizu, and T. Kimura, Phys. Rev. B 91, 081107(R) (2015).
- ³¹Y. Wu, X. Chen, J. Zhang, J. Liu, W. Xiao, Z. Wu, and X. Chen, J. Appl. Phys. 114, 154110 (2013).
- ³²F. Hong, B. Yue, N. Hirao, G. Ren, B. Chen, and H. Mao, Appl. Phys. Lett. 109, 241904 (2016).
- ³³T. K. Koo, S. Lee, and S. W. Cheong, Appl. Phys. Lett. **76**, 224 (2000).
- ³⁴L. Ehm, L. A. Borkowski, J. B. Parise, S. Ghose, and Z. Chen, Appl. Phys. Lett.
 98, 021901 (2011).
- ³⁵H. Hua and Y. K. Vohra, Appl. Phys. Lett. **71**, 2602 (1997).
- ³⁶A. Chandra, Appl. Phys. Lett. **90**, 142903 (2007).

- ³⁷L. Liu, H. X. Song, X. Li, D. Zhang, R. Mathieu, S. Ivanov, H. Skogby, and P. Lazor, Appl. Phys. Lett. **114**, 162903 (2019).
- ³⁸Y. Liu, J. Wang, M. Azuma, W. Mao, and W. Yang, Appl. Phys. Lett. **104**, 043108 (2014).
- ³⁹T. Yamanaka, T. Okada, and Y. Nakamoto, Phys. Rev. B **80**, 094108 (2009).
- ⁴⁰M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano, and J. P. Attfield, J. Am. Chem. Soc. **129**, 14433–14436 (2007).
- ⁴¹L. Zhang, Y. Meng, P. Dera, W. Yang, W. L. Mao, and H. K. Mao, Proc. Natl. Acad. Sci. **110**, 6292–6295 (2013).
- ⁴²C. Meade, H. K. Mao, and J. Hu, Science 268, 1743–1745 (1995).
- ⁴³L. Zhang, Y. Meng, W. Yang, L. Wang, W. L. Mao, Q. S. Zeng, J. S. Jeong, A. J. Wagner, K. A. Mkhoyan, W. Liu, R. Xu, and H. K. Mao, Science 344, 877–882 (2014).
- ⁴⁴K. Hirose, Y. Fei, Y. Ma, and H. K. Mao, Nature **397**, 53–56 (1999).
- ⁴⁵Y. Shirako, H. Kojitani, M. Akaogi, K. Yamaura, and E. Takayama-Muromachi, Phys. Chem. Miner. 36, 455 (2009).
- ⁴⁶A. M. Glazer, Acta Crystallogr., Sect. B **28**, 3384 (1972).
- ⁴⁷A. M. Glazer, Acta Crystallogr., Sect. A **31**, 756 (1975).
- ⁴⁸R. Vilarinho, P. Bouvier, M. Guennou, I. Peral, M. C. Weber, P. Tavares, M. Mihalik, Jr., M. Mihalik, G. Garbarino, M. Mezouar, J. Kreisel, A. Almeida, and J. Agostinho Moreira, Phys. Rev. B **99**, 064109 (2019).
- ⁴⁹J.-S. Zhou, J. A. Alonso, A. Muoñz, M. T. Fernández-Díaz, and J. B. Goodenough, Phys. Rev. Lett. **106**, 057201 (2011).
- ⁵⁰R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W. A. Crichton, C. A. Kuntscher, and J. Kreisel, Phys. Rev. B **79**, 184110 (2009).
- ⁵¹M. Guennou, P. Bouvier, G. S. Chen, B. Dkhil, R. Haumont, G. Garbarino, and J. Kreisel, Phys. Rev. B 84, 174107 (2011).
- ⁵²H. J. Xiang, M. Guennou, J. Íñiguez, J. Kreisel, and L. Bellaiche, Phys. Rev. B 96, 054102 (2017).
- ⁵³P. Chen, M. N. Grisolia, H. J. Zhao, O. E. González-Vázquez, L. Bellaiche, M. Bibes, B. G. Liu, and J. Íñiguez, Phys. Rev. B 97, 024113 (2018).
- 54 J. Zhao, N. L. Ross, and R. J. Angel, Acta Crystallogr., Sect. B 60, 263 (2004).
- ⁵⁵R. J. Angel, J. Zhao, and N. L. Ross, Phys. Rev. Lett. **95**, 025503 (2005).
- ⁵⁶T. Tohei, A. Kuwabara, T. Yamamoto, F. Oba, and I. Tanaka, Phys. Rev. Lett. 94, 035502 (2005).
- ⁵⁷N. W. Thomas, Acta Crystallogr., Sect. B 52, 954 (1996).
- ⁵⁸M. Avdeev, E. N. Caspi, and S. Yakovlev, Acta Crystallogr., Sect. B 63, 363 (2007).
- ⁵⁹V. S. Bhadram, D. Swain, R. Dhanya, M. Polentarutti, A. Sundaresan, and C. Narayana, Mater. Res. Express 1, 026111 (2014).
- ⁶⁰P. Bouvier and J. Kreisel, "Pressure-induced phase transition in LaAlO₃," J. Phys. 14, 3981 (2002).
- ⁶¹B. J. Kennedy, T. Vogt, C. D. Martin, J. B. Parise, and J. A. Hrilijac, J. Phys. 13, L925–L930 (2001).
- ⁶²D. Andrault and J. P. Poirier, Phys. Chem. Miner. 18, 91–105 (1991).
- ⁶³J. Zhao, N. L. Ross, and R. J. Angle, Phys. Chem. Miner. 31, 299–305 (2004).
- 64 T. Ishidate and T. Isonuma, Ferroelectrics 137, 45–52 (1992).
- ⁶⁵J. Zhao, N. L. Ross, R. J. Angel, M. A. Carpenter, C. J. Howard, D. A. Pawlak, and T. Lukasiewicz, J. Phys. **21**, 235403 (2009).
- ⁶⁶B. J. Kennedy, T. Vogt, C. D. Martin, J. B. Parise, and J. A. Hriljac, Chem. Mater. 14, 2644–2648 (2002).
- ⁶⁷I. Loa, P. Adler, A. Grzechnik, K. Syassen, U. Schwarz, M. Hanfland, G. K. Rozenberg, P. Gorodetsky, and M. P. Pasternak, Phys. Rev. Lett. 87, 125501 (2001).
- ⁶⁸W. M. Xu, O. Naaman, G. K. Rozenberg, M. P. Pasternak, and R. D. Taylor, Phys. Rev. B 64, 094411 (2001).
- ⁶⁹N. Li, Y. Li, H. Li, R. Tang, Y. Zhao, D. Han, Y. Ma, Q. Cui, P. Zhu, and X. Wang, Chin. Phys. B 23, 069101 (2014).
- ⁷⁰L. Pinsard-Gaudart, J. Rodríguez-Carvajal, A. Daoud-Aladine, I. Goncharenko, M. Medarde, R. I. Smith, and A. Revcolevschi, Phys. Rev. B 64, 064426 (2001).
- ⁷¹A. Y. Ramos, H. C. N. Tolentino, N. M. Souza-Neto, J. P. Itié, L. Morales, and A. Caneiro, Phys. Rev. B 75, 052103 (2007).
- ⁷²S. Gomez-Salces, F. Aguado, F. Rodriguez, R. Valiente, J. Gonzalez, R. Haumont, and J. Kreisel, Phys. Rev. B 85, 144109 (2012).

Appl. Phys. Lett. **117**, 080502 (2020); doi: 10.1063/5.0014947 Published under license by AIP Publishing

- ⁷³G. Kh. Rozenberg, M. P. Pasternak, W. M. Xu, L. S. Dubrovinsky, S. Carlson, and R. D. Taylor, Europhys. Lett. 71, 228 (2005).
- ⁷⁴M. W. Lufaso, R. B. Macquart, Y. Lee, B. T. Vogta, and H. Loye, Chem. Commun. 2, 168–170 (2006).
- ⁷⁵K. S. Wallwork, B. J. Kennedy, Q. Zhou, Y. Lee, and T. Vogt, J. Solid State Chem. **178**, 207–211 (2005).
- ⁷⁶J. S. Olsena, L. Gerwardb, G. Vaitheeswaranc, V. Kanchanac, and L. Alff, High Pressure Res. 29, 83–86 (2009).
- 77 B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, J. Mol. Struct. 888, 244–252 (2008).
- ⁷⁸B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, J. Phys. 16, 8367–8376 (2004).
- ⁷⁹L. Liu, S. Ivanov, R. Mathieu, M. Weil, X. Li, and P. Lazor, J. Alloys Compd. 801, 310–317 (2019).
- ⁸⁰N. Li, B. Manoun, L. Tang, F. Ke, F. Liu, H. Dong, P. Lazor, and W. Yang, Inorg. Chem. 55, 6770–6775 (2016).
- ⁸¹D. Han, W. Gao, N. Li, R. Tang, H. Li, Y. Ma, Q. Cui, P. Zhu, and X. Wang, Chin. Phys. B **22**, 059101 (2013).
- ⁸²S. Meenakshi, V. Vijayakumar, S. N. Achary, and A. K. Tyagi, J. Phys. Chem. Solids 72, 609–612 (2011).
- ⁸³A. K. Mishra, H. K. Poswal, S. N. Acharya, A. K. Tyagi, and S. M. Sharma, Phys. Status Solidi B 247, 1773–1777 (2010).
- ⁸⁴J. Zhao, N. L. Ross, and R. J. Angel, Acta Crystallogr., Sect. B 62, 431–439 (2006).
 ⁸⁵M. W. Lufaso, P. W. Barnes, and P. M. Woodward, Acta Crystallogr., Sect. B 62, 397–410 (2006).
- ⁸⁶T. Goko, Y. Endo, E. Morimoto, J. Arai, and T. Matsumoto, Physica B 329-333, 837-839 (2003).
- 87 P. Zhao, R. C. Yu, F. Y. Li, and Z. X. Liu, J. Appl. Phys. 92, 1942 (2002).
- ⁸⁸Y. Qian, H. Wu, R. Lu, W. Tan, C. Xiao, and K. Deng, J. Appl. Phys. **112**, 103712 (2012).
- ⁸⁹N. Zu, J. Wang, and Z. Wu, J. Phys. Chem. C 117, 7231–7235 (2013).
- 90 H. Zhao, X. Liu, X. Chen, and L. Bellaiche, Phys. Rev. B 90, 195147 (2014).
- ⁹¹B. J. Kennedy, L. Li, Y. Lee, and T. Vogt, J. Phys. 16, 3295–3301 (2004).
- ⁹²P. Adler, S. A. Medvedev, P. G. Naumov, S. Mohitkar, R. Rüffer, M. Jansen, and C. Felser, Phys. Rev. B 99, 134443 (2019).
- ⁹³L. S. I. Veiga, G. Fabbris, M. van Veenendaal, N. M. Souza-Neto, H. L. Feng, K. Yamaura, and D. Haskel, *Phys. Rev. B* **91**, 235135 (2015).
- 94 J.-S. Zhou, J. B. Goodnough, and B. Dabrowski, Phys. Rev. Lett. 94, 226602 (2005).
- ⁹⁵H. Kobayashi, S. Ikeda, Y. Yoda, N. Hirao, Y. Ohishi, J. A. Alonso, M. J. Martinez-Lope, R. Lengsdorf, D. I. Khomskii, and M. M. Abd-Elmeguid, Phys. Rev. B **91**, 195148 (2015).
- ⁹⁶Y. Wang, J. Ying, Z. Zhou, J. Sun, T. Wen, Y. Zhou, N. Li, Q. Zhang, F. Han, Y. Xiao, P. Chow, W. Yang, V. V. Struzhkin, Y. Zhao, and H. K. Mao, Nat. Commun. 9, 1914 (2018).

- ⁹⁷Y. Wang, Z. Zhou, T. Wen, Y. Zhou, N. Li, F. Han, Y. Xiao, P. Chow, J. Sun, M. Pravica, A. L. Cornelius, W. Yang, and Y. Zhao, J. Am. Chem. Soc. 138, 15751–15757 (2016).
- ⁹⁸T. Wen, Y. Wang, N. Li, Q. Zhang, Y. Zhao, W. Yang, Y. Zhao, and H. K. Mao, J. Am. Chem. Soc. **141**, 505 (2019).
- ⁹⁹N. Li, F. Fan, F. Sun, Y. Wang, Y. Zhao, F. Liu, Q. Zhang, D. Ikuta, Y. Xiao, P. Chow, S. M. Heald, C. Sun, D. Brewe, A. Li, X. Lü, H. Mao, D. I. Khomskii, H. Wu, and W. Yang, Phys. Rev. B **99**, 195115 (2019).
- 100 G. R. Hearne, M. P. Pasternak, R. D. Taylor, and P. Lacorre, Phys. Rev. B 51, 11495 (1995).
- ¹⁰¹V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, J. Struct. Chem. 49, 781 (2008).
- 102 F. Aguado, F. Rodríguez, R. Valiente, J. Itiè, and M. Hanfland, Phys. Rev. B 85, 100101(R) (2012).
- 103Z. Chen, T. A. Tyson, K. H. Ahn, Z. Zhong, and J. Hu, J. Magn. Magn. Mater. 322, 3049–3052 (2010).
- ¹⁰⁴C. Meneghini, D. Levy, S. Mobilio, M. Ortolani, M. Nuñez-Reguero, A. Kumar, and D. D. Sarma, Phys. Rev. B 65, 012111 (2001).
- ¹⁰⁵J.-G. Cheng, J.-S. Zhou, J. B. Goodenough, J. A. Alonso, and M. J. Martinez-Lope, Phys. Rev. B 82, 085107 (2010).
- 106 X. Wang, Q. Cui, Y. Pan, W. Gao, J. Zhang, and G. Zou, J. Alloys Compd. 321, 72-75 (2001).
- ¹⁰⁷K. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).
- ¹⁰⁸ R. Pradhees, H. S. Nair, V. Sankaranarayanan, and K. Sethupathi, Eur. Phys. J. B 85, 260 (2012).
- ¹⁰⁹T. Kawamoto, K. Fujita, I. Yamada, T. Matoba, S. J. Kim, P. Gao, X. Pan, S. D. Findlay, C. Tassel, H. Kageyama, A. J. Studer, J. Hester, T. Irifune, H. Akamatsu, and K. Tanaka, J. Am. Chem. Soc. **136**, 15291–15299 (2014).
- ¹¹⁰C. Moure and O. Peña, Prog. Solid State Chem. **43**, 123–148 (2015).
- ^{III}A. A. Belik, T. Furubayashi, Y. Matsushita, M. Tanaka, S. Hishita, and E. Takayama-Muromachi, Angew. Chem., Int. Ed. 48, 6117–6120 (2009).
- ¹¹²P. Adler, U. Schwarz, and K. Syassen, J. Solid State Chem. **155**, 381–388 (2000).
- ¹¹³F. Zhu, Y. Wu, X. Lai, S. Qin, K. Yang, J. Liu, and X. Wu, Phys Chem. Miner. 41, 449–459 (2014).
- ¹¹⁴T. Kawakami, S. Nasu, K. Kuzushita, T. Sasaki, S. Morimoto, T. Yamada, S. Endo, S. Kawasaki, and M. Takano, J. Phys. Soc. Jpn. **72**, 33–36 (2003).
- ¹¹⁵N. L. Ross, R. J. Angel, and F. Seifert, Phys. Earth Planet. Inter. **129**, 145–151 (2002).
- ¹¹⁶I. Yamada, S. Marukawa, M. Murakami, and S. Mori, Appl. Phys. Lett. 105, 231906 (2014).
- ¹¹⁷Y. Long, T. Kawakami, W. Chen, T. Saito, T. Watanuki, Y. Nakakura, Q. Liu, C. Jin, and Y. Shimakawa, Chem. Mater. 24, 2235–2239 (2012).
- ¹¹⁸ A. Möller, U. Löw, T. Taetz, M. Kriener, G. André, F. Damay, O. Heyer, M. Braden, and J. A. Mydosh, Phys. Rev. B 78, 024420 (2008).
- ¹¹⁹D. A. Vander Griend, S. Boudin, V. Caignaert, K. R. Poeppelmeier, Y. Wang, V. P. Dravid, M. Azuma, M. Takano, Z. Hu, and J. D. Jorgensen, J. Am. Chem. Soc. **121**, 4787–4792 (1999).