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ABSTRACT: When compressed in a matrix of solid hydrogen, many metals form compounds
with increasingly high hydrogen contents. At high density, hydrogenic sublattices can emerge,
which may act as low-dimensional analogues of atomic hydrogen. We show that at high
pressures and temperatures, ruthenium forms polyhydride species that exhibit intriguing
hydrogen substructures with counterintuitive electronic properties. Ru3H8 is synthesized from
RuH in H2 at 50 GPa and at temperatures in excess of 1000 K, adopting a cubic structure with
short H−H distances. When synthesis pressures are increased above 85 GPa, we observe RuH4
which crystallizes in a remarkable structure containing corner-sharing H6 octahedra.
Calculations indicate this phase is semimetallic at 100 GPa.

The physical properties of a host metal can be profoundly
altered by the presence of hydrogen. Examples include

switchable mirrors driven by an electronic transition,1,2 the
disruption of magnetic ordering,3−6 and the dramatic increases
in superconducting transition temperatures (Tc) for metallic
hydrides at high pressures (P > 200 GPa).7−10 The solubility of
hydrogen in transition metals increases rapidly under
compression, with polyhydride species being discovered in a
number of first- and second-row members of the group11−18

and predicted for many others.19−22 As hydrogen content
increases, intriguing substructures emerge, taking the form of
H3

− quasimolecules, clathrate cages, and layers of isolated H
atoms.13,19,23−28 Unique to group 8 metals (Fe, Ru, Os), it has
been predicted that increasing hydrogen content should lead to
the emergence of a series of nonmetallic hydrides FeH4,

29

FeH6,
30 FeH7,

28 RuH6,
31 and OsH6.

24 Despite intensive study
of the Fe−H system, none of these materials has been
synthesized due to the very high pressures (i.e., >200 GPa)
required to stabilize them. Ruthenium polyhydride structures
are predicted to emerge at much lower pressures, making it
ideal to study the formation and properties of nonmetallic
hydrides.
Ruthenium monohydride (RuH) has been shown to form at

pressures above 14 GPa at room temperature by reaction of its
constituent elements and remains stable to at least 30 GPa.32

Theoretical structure searches predict the emergence of stable
compounds with stoichiometries of RuH3 and RuH6, the latter
containing molecular H2 and becoming unstable above 100
GPa.31

Here, we report the formation of two new ruthenium
polyhydride species synthesized using a combination of high
temperatures and pressures. On compression, we observe the

formation of the known hydride RuH and confirm its stability
up to 100 GPa. After heating RuH in a matrix of solid H2 at
pressures above 50 GPa, new diffraction peaks appear, which
we determine to be due to Ru3H8, which decomposes below 20
GPa. After heating in H2 at pressures above 85 GPa, RuH
partially transforms to a second novel phase, RuH4, which
remains stable down to 70 GPa. Through a combination of X-
ray diffraction and DFT calculations, we characterized the
structures and electronic properties of this material. RuH4 is
found to contain atomic hydrogen arranged in corner-sharing
octahedra. Our calculations indicate that this material is a
semimetal at 100 GPa.
After gas loading at 0.2 GPa, mixtures of Ru and H2 were
compressed to 15 GPa, and in agreement with a previous
study, we observe the formation of RuH by compression alone
(Figure 1(a)).32 RuH crystallizes in a face-centered cubic
structure (space group Fm3̅m, a = 3.8650(1) Å at 33 GPa)
isostructural to other transition metal monohydrides (e.g.,
CoH, RhH, NiH).14,15,17 In the absence of heating, we find
RuH remains stable to pressures of 100 GPa.
In situ laser heating has been shown to be a highly effective

route to reaching new transition metal hydrides11,13−16 and
was applied here to explore the formation of predicted
ruthenium polyhydrides. Samples of RuH and H2 were
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compressed and at pressures above 50 GPa laser heated to
temperatures over 1500 K, leading to the appearance of new
diffraction peaks in addition to those of RuH (Figure 1(a)). All
of the new diffraction peaks could be indexed to a primitive
cubic unit cell a = 3.8352(3) Å. Structure solution by charge-
flipping33 suggested the presence of a single Ru atom site 3g

( ), 0,01
2

. Analysis of the volume per Ru atom (Figure 2(a))

suggested a stoichiometry of RuH3. Samples were subsequently
compressed and decompressed to determine the stability
range, finding this new phase to be stable up to pressures of at
least 71 GPa and down to 17 GPa before decomposing back
into RuH + H2.
Although a RuH3 phase exhibiting a primitive cubic

structure (Pm3̅m, a = 2.598 Å at 100 GPa) has been
predicted,31 our experimental diffraction patterns clearly
display additional reflections at low angles, which can only
be explained with a larger unit cell. To understand this
discrepancy, we performed our own structure searching
calculations using noninteger values of H/Ru and directed
by the experimental lattice constants. These calculations found
a stable compound with stoichiometry Ru3H8, which shows
excellent agreement between calculated and observed unit cell
dimensions and volume per Ru atom (Figure 2(a) and S1).
Calculations indicate that our observed Ru3H8 structure lies

on the convex hull and is 0.446 eV per Ru atom more favorable
than RuH3, as predicted by ref 31, which lies 0.01 eV above at
70 GPa (Figure S2). In Ru3H8, each Ru atom is coordinated by
eight H atoms with equal Ru−H bonds (1.805 Å at 70 GPa).
Remarkably, each unit cell contains a cubic H8 unit at the
center with H−H distances (at 70 GPa) of 1.616 Å along each
cube edge. These isolated units result in H−H distances that
are significantly shorter than comparable phases such as
FeH3

12 and in fact track closely to those of the molecular
hydrides AlH3 and H3S.

34,35 Unlike these compounds, the
close H−H distances are not part of a continuous network but

instead remain discrete units within the crystal structure
(Figure 2(b)). Considering the H8 cluster as a single unit at the
unit cell center, the structure of Ru3H8 is analogous to the
Cu3Au-type structure. This structure type is a superstructure of
the familiar fcc packing, which suggests that Ru atoms and H8

Figure 1. Representative X-ray diffraction patterns of Ru polyhydrides (a) after laser heating at 51 GPa, additional peaks due to Ru3H8 can be
observed (λ = 0.3344 Å). (b) At higher pressures of 89 GPa, heating RuH + H2 results in additional peaks indexed to a monoclinic unit cell due to
RuH4 (λ = 0.2897 Å). (c, d) Representative Le Bail refinements of RuH + Ru3H8 (λ = 0.3344 Å) and RuH + RuH4 (λ = 0.2897 Å). Tick marks
indicate Bragg peaks for the noted phases. Peaks due to ReH gasket are marked with (*).

Figure 2. (a) Volume per Ru atom for various Ru−H compounds.
Crosses refer to previous study.32 (b) Nearest H−H interatomic
distances in various hydrogen-bearing materials at high pres-
sures.13,34,35 Inset shows corresponding hydrogen substructures. (c)
Crystal structures of Ru−H compounds RuH, Ru3H8, and RuH4. Ru
atoms are blue; H atoms are white.
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clusters have comparable sizes under these conditions.36

Calculations show Ru3H8 to be metallic and dynamically
stable in the observed pressure regime (Figure S3 and S4).
Applying the same heating regime to mixtures of RuH + H2

at pressures above 82 GPa caused new diffraction peaks to
appear, indicating the formation of a second novel high
pressure ruthenium polyhydride. All diffraction peaks could be
fitted with a C-centered monoclinic cell (a = 4.0400(5), b =
3.5477(3), c = 2.7051(2) Å, β = 100.35(9)° at 83 GPa). This
unit cell was used to constrain structure-searching calculations
which explored stoichiometries with H/Ru > 3 (Figure 2(a)),
finding a dynamically stable solution with stoichiometry RuH4
and space group symmetry P21 (Figures 2(c) and 3(a)).

Samples were compressed up to 100 GPa and subsequently
decompressed to evaluate the equation of state and stability of
this new compound, finding it to be stable down to at least 69
GPa, and changes in unit cell dimensions are in close
agreement with calculations (Figure S5 and Table S1). At 70
GPa, RuH4 is metastable, lying 0.027 eV/f.u. above the convex
hull; this deviation is decreased at higher pressures reducing to
0.014 eV/f.u. at 100 GPa (Figure S2). It should be noted that
other predicted metastable hydride phases have been
synthesized to date, e.g.37 RuH4 adopts an entirely new
structure type, analogous to the postulated γ-phase of FeH4,
predicted to occur at pressures above 240 GPa but which has
remained elusive in experimental studies to date.29,36

In RuH4, each Ru atom is coordinated by 12 H atoms
forming highly irregular polyhedra with Ru−H interatomic
distances ranging from 1.644 to 1.965 Å (at 100 GPa).
However, the remarkable nature of this structure is made clear
when we examine the H−H nearest neighbor distances,

highlighted with “bonds” to guide the eye in Figure 3(a). Ru
atoms are arranged in channels along the a axis with H atoms
forming layers of corner-sharing octahedra extending along the
b axis. Each layer is two octahedra wide and staggered along a,
linked by close H−H distances of 1.385 Å (shown in red
Figure 3(a)). The calculated electron density distribution
(Figure 3(b)) provides a qualitative indication of the bonding
within RuH4 and in particular the nature of the H6 octahedra.
As expected from other transition metal hydrides, bonding
primarily occurs between Ru and H atoms. Examining slices
through the H6 clusters shows the absence of electron density
between H atoms, clearly indicating that no H−H bonding is
present, either within the H6 octahedra or along the short H−
H links between clusters, confirming the atomic nature of
hydrogen in this structure.
Electronic structure calculations were conducted using the

HSE hybrid functional which corrects for the known
systematic underestimation of band gap energies by standard
GGA functionals.38,39 Calculated electronic band structures
indicate that RuH4 is semimetallic at 100 GPa (Figure 4). To

our knowledge, RuH4 is the first experimentally observed
semimetallic transition-metal hydride. It is intriguing to note
that although a nonmetallic ruthenium hydride has been
predicted, it shares no structural relation to RuH4 and instead
contains molecular H2 units.

31

Current understanding of the mechanism of high Tc
hydrides relies on the coupling of metallic conduction and
high hydrogen content.7 The emergence of complex hydrogen
substructures is correlated to a reduction in metallic
conduction, strongly suggesting that late transition metals
likely provide a poor route to high Tc materials in line with
recent critical analyses.40

We have demonstrated the formation of a remarkably
complex hydrogen sublattice in RuH4, synthesized at pressures
of 85 GPa and temperatures of 1500 K. This structure contains
layers of corner-sharing H6 octahedra surrounding isolated Ru
atoms. Electronic structure calculations indicate this phase is
semimetallic at 100 GPa. Our findings show that with

Figure 3. (a) Hydrogen sublattice in RuH4, white “bonds” are shown
between H atoms as a guide to the eye to highlight the structure of
octahedral clusters. Short H−H distances between clusters are shown
in red. (b) Two representative planes of the electron density
distribution in RuH4 are shown in relation to the crystal structure;
(right) electron density maps through key aspects of the H6 units.

Figure 4. (a) Electronic band structure of RuH4 at 100 GPa
calculated with the HSE06 functional. (b) Region of the Fermi level
highlighted. (c) Phonon dispersion curves for RuH4 at 100 GPa.
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increasing hydrogen content and pressure, complex emergent
atomic hydrogen structures become favorable with counter-
intuitive effects on the electronic properties of transition-metal
hydrides.
Experimental and Theoretical Methods. High purity

ruthenium powder (99.9%, 1−2 μm particle size) from Alfa
Aesar was placed into diamond-anvil cells (DACs) together
with gold as a pressure marker and subsequently gas loaded
with research-grade hydrogen gas (99.9999%) at 0.2 GPa.41

Loading of hydrogen was confirmed by the observation of the
hydrogen vibrational mode using a custom-built microfocused
Raman system.42 Rhenium gaskets were used to form the
sample chamber in all experimental runs, diamond anvil culets
ranged from 50 to 200 μm.
Ru samples were heated in situ from both sides uniaxially by

directly coupling to an yttrium−aluminum−garnet (YAG)
laser with wavelength λ = 1064 nm. Angle-dispersive X-ray
diffraction patterns were recorded on PerkinElmer XRD21 and
Mar345 image-plate detectors at the P02.2 ECB (PETRA,
Germany) and ID15B (ESRF, France) beamlines with energies
in the range 30−42 keV.43 Two-dimensional image-plate data
were integrated with DIOPTAS44 to yield intensity vs 2θ plots.
Patterns were indexed with CONOGRAPH,45 and Le Bail46

refinements were carried out in Jana2006.47 Volume and linear
equation of state parameters were determined using EoSFit
7.48

The electronic structure calculations were carried out at high
pressures within the framework of density function theory
(DFT) in conjunction with the projector augment wave
method (PAW) as implemented in the VASP code.49−52 We
used Heyd−Scuseria−Ernzerhof (HSE06)38 functional to
determine the electronic properties of Ru−H compounds as
the HSE06 functional was shown to predict much better
electronic properties than the generalized gradient approx-
imations (GGA). The cutoff energy of the plane wave was set
to 800 eV, and Brillouin zone sampling was done on
Monkhorst−Pack k-mesh with separations of 0.03 Å−1. The
3p, 4s, and 3d and H 2s and 2p electrons are included in the
valence space.
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