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Abstract: The emergence and development of two-dimensional (2D) materials has provided a
new direction for enhancing the thermoelectric (TE) performance due to their unique structural,
physical and chemical properties. However, the TE performance measurement of 2D materials
is a long-standing challenge owing to the experimental difficulties of precise control in samples
and high demand in apparatus. Until now, there is no universal methodology for measuring the
dimensionless TE figure of merit (ZT) (the core parameter for evaluating TE performance) of 2D
materials systematically in experiments. Raman spectroscopy, with its rapid and nondestructive
properties for probing samples, is undoubtedly a powerful tool for characterizing 2D materials as it
is known as a spectroscopic ‘Swiss-Army Knife’. Raman spectroscopy can be employed to measure
the thermal conductivity of 2D materials and expected to be a systematic method in evaluating TE
performance, boosting the development of thermoelectricity. In this review, thermoelectricity, 2D
materials, and Raman techniques, as well as thermal conductivity measurements of 2D materials by
Raman spectroscopy are introduced. The prospects of obtaining ZT and testing the TE performance
of 2D materials by Raman spectroscopy in the future are also discussed.

Keywords: Raman spectroscopy; two-dimensional materials; thermoelectricity; thermal conductivity;
graphene

1. Introduction

Thermoelectricity, which is a property of materials of directly realizing the transformation between
heat and electric energy, has attracted extensive research interest due to the issues of severe energy
wastage and insufficient resources affecting society. Since the Seebeck effect was discovered in 1821,
the development of thermoelectricity is contingent on seeking and discovering new thermoelectric
(TE) materials with a high figure of merit (ZT) [1–4]. It is imperative to identify novel TE materials
or to develop the new methods to promote TE performance of known materials, realizing their wide
applications in industry. In 2004, Novoselov and Geim successfully prepared single-layer graphene
by a mechanical exfoliation method [5], which greatly stimulated studies on two-dimensional (2D)
materials. Subsequently, layered molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black
phosphorus (BP), etc. were investigated, expanding the 2D materials family and promoting their
development in electronics, photonics, mechanics, and thermotics [6–12]. Importantly, owing to their
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unique properties, 2D materials have attracted tremendous attention to thermoelectricity and become
potential candidates for advancing TE performance [13–20]. However, it is difficult to exactly measure
the TE performance of 2D materials due to their unique structure properties and a new measurement
system applied for 2D materials is needed.

Based on the discovery of the light scattering effect in 1928, Raman spectroscopy has become a
versatile tool to characterize materials. Raman spectroscopy can provide both structural and electronic
information of samples rapidly and non-destructively, being one of the most important techniques for
studying 2D materials [21]. The thermal conductivity of materials is a critical parameter to evaluate
the TE performance, whereas its measurement in 2D materials is a difficult task. Balandin et al.
firstly employed Raman spectroscopy to measure the thermal conductivity of suspended single-layer
graphene in 2008 [22], leading to a fruitful advancement in the experimental thermal studies of 2D
materials. This method provides the possibility for systematic testing of TE properties, and is guiding
the significance for the development of TE materials in the future. This review starts by introducing
the background and advancement of thermoelectricity, briefly presenting the development of 2D
TE materials in recent years. Then, we review the working principles and applications of Raman
spectroscopy. Finally, several examples of how Raman spectroscopy can be used to measure the
thermal conductivity of 2D materials are discussed in detail. Prospects, ideas and challenges for the
comprehensive measurement of 2D TE performance in the future are reviewed as well.

2. Thermoelectric and 2D Materials

2.1. Background of Thermoelectricity

The TE effect comprises the Seebeck and the Peltier effects. In 1821, Seebeck found that the
magnetic needle deflected in the presence of different connected metals under a temperature gradient.
Essentially, the electric current was generated by different conductors under a temperature difference,
and a magnetic field was generated by the current relying on the Oersted electromagnetism effect,
which effected the deflection of the magnetic needle.
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Figure 1. Illustration of TE effect and represented devices. (a) Schematic of the Seebeck effect. Electric
current is produced when P-type and N-type semiconductors are placed under temperature differences
at the same time. (b) Schematic of the Peltier effect. Heating or cooling is generated when electric current
flows through P-type and N-type semiconductors. (c) Schematic of a TE generator. To improve the
system-level conversion efficiency, P-type and N-type semiconductor pellets are connected in parallel
under ceramic substrates, forming TE devices. Reproduced with permission from [2]. Copyright 2008,
American Association for the Advancement of Science.
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The phenomenon of generating electricity by employing a temperature difference is thus called
the Seebeck effect. As shown in Figure 1a, if the N- and P-type semiconductors module at the top
is the heat input and at the bottom is the heat removal part, carriers in semiconductors driven by
the temperature difference move from the heat terminal to the cool terminal, producing an electron
flow from the P-type semiconductor to the N-type semiconductor in the TE module. This is based on
the Seebeck effect. The Peltier effect, observed by Peltier in 1834, is the inverse of the Seebeck effect.
As shown in Figure 1b, heating or cooling is generated when a TE module is under a voltage, due to
carriers taking away heat while moving under the electric field. Besides, the Thomson effect also exists,
but can be neglected in this system. Thus, the TE effect mainly consists of the Seebeck and Peltier
effects, which are the basis of TE devices. Figure 1c is the illustration of TE devices types, which are
connected by large numbers of N- and P-type semiconductors modules in series to increase operating
voltage and spread heat flow [2,3].

TE materials have extensive applications, mostly related to TE power generation and refrigeration
technology. The former includes waste heat recovery, use of solar energy, and power supplying for
wearable electronics [23–26]. The latter is widely applied in many areas of electric refrigeration due to
its solid-state nature, absence of vibrations, simplicity and environmental friendliness [27].

The criteria of evaluating TE materials performance is the conversion efficiency between heat and
electricity, which is directly related to the dimensionless TE figure of merit (ZT). For a generator, their
relationship could be expressed as [1]:

η =
Th − Tc

Th
·
√

1 + ZT − 1√
1 + ZT + Tc

Th

(1)

where η is conversion efficiency, Th and Tc are the temperature of heat and cool terminals, respectively.
As it is shown, the generator efficiency depends on ZT strongly, thus optimizing ZT is a primary
operation for enhancing TE performance. Before introducing the ZT value, Seebeck coefficient needs to
be a simple explanation. The Seebeck coefficient is a parameter in Seebeck effect, which is a measure of
the magnitude of the TE voltage generated per degree of temperature difference between two terminals
of the semiconductor module. The definition is given below:

S = dV/dT (2)

where S is Seebeck coefficient, V is the TE voltage. ZT is defined as

ZT = S2σT/κ (3)

in which κ represents thermal conductivity and σ represents electrical conductivity. From this formula,
it is obvious that ZT depends on the Seebeck coefficient, absolute temperature T, the electrical
conductivity, and the thermal conductivity. However, S, σ, and κ are interrelated in traditional
bulk TE materials, so it is very difficult to control these variables independently to enhance ZT.
The interdependencies are mainly reflected in two aspects. One is between the Seebeck coefficient and
the electrical conductivity in specific materials. For metals or degenerate semiconductors (parabolic
band, energy-independent scattering approximation) the S is given by:

S =
8π2k2

B
3eh2 m∗T

( π

3n

) 2
3 (4)

and σ is expressed as:
σ = neµ (5)

where kB is Boltzmann constant, m* is the effective mass of the carrier, n is the carrier concentration, and
µ is the carrier mobility. To ensure that the Seebeck coefficient is large at certain temperature, one way
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is to raise the effective mass, and the other is to reduce the carrier concentration. However, both are
impracticable because both can reduce the electrical conductivity according to Equation (5). The other
interdependency stems from the electrical conductivity and the thermal conductivity. The thermal
conductivity mainly consists of two parts, which are κe coming from electrons or holes transporting
heat, and κl coming from phonons traveling through the lattice, respectively. This can be expressed as:

κ = κe + κl (6)

According to Wiedemann–Franz law, the electrons’ thermal conductivity (κe) is directly related to
the electrical conductivity (σ):

κe = LσT (7)

where L is the Lorenz factor that is a constant varying with carrier concentration. These clearly show
enhancement on ZT is a tricky thing due to the coupled relationship of the thermal and the electrical
conductivities [1].

The correlation and complexity between the parameters which are ubiquitous in conventional
TE materials, increasing the difficulties of optimizing ZT and being the major causes limiting the
development of thermoelectricity.

2.2. Development of TE Materials

Under the efforts of many scientific researchers around the world, the development of traditional
bulk TE materials has made great progress [28–30]. Bismuth telluride (Bi2Te3) and its alloys are
the classical TE materials with large Seebeck coefficients and are widely used in the commercial
field [31–34]. Silicon germanium (SiGe) and its alloys are excellent TE materials suitable for high
temperature applications, that are used in TE modules for deep-space missions to convert radio-isotope
heat into electricity [35,36]. Lead telluride (PbTe) is also a perfect TE material studied by researchers all
the time [37,38]. In addition, skutterudite [39,40], half-Heusler [41], clathrates [42], etc. also cause great
interest and have become an indispensable part of the TE family. Other than these, SnSe was studied
in depth by Zhao et al. [43,44] and Wei et al. [45] in recent years, becoming a promising TE material.

It is shown that most state-of-the-art TE materials have maximum ZT values between 1
and 2.5 [46]. Nevertheless, such a value is not enough to achieve large-scale application of
thermoelectricity [47]. It is necessary to promote the TE property of materials, in which one intriguing
way is to explore low-dimensional materials. The two interdependencies of parameters influencing
ZT discussed above, in a way, can be decoupled in low-dimensional materials. The reasons can be
explained as: (1) enhancing the Seebeck coefficient as well as controlling the Seebeck coefficient and
electrical conductivity independently because of quantum-confinement effects, (2) increasing the
ratio of electrical conductivity to thermal conductivity taking advantage of numerous interfaces to
scatter phonons more effectively than electrons. Both theoretical studies and experimental results
show that reducing the material dimensions can increase the ZT value of TE materials [48–51].
Low-dimensional materials are pointed out to provide a new direction on designing high-performance
TE materials [33,52–56]. Low-dimensional materials include zero-dimensional (0D), such as quantum
dots; one-dimensional (1D) ones, such as nanowires; and 2D materials, such as quantum wells and
superlattices. This review mainly involves 2D materials.

2.3. 2D Materials

2D materials are crystalline materials consisting of single or a few layers of atoms with the lateral
size being much larger than the thickness. The main categories of 2D materials are shown in Figure 2,
which can help grasp and understand the 2D materials in a macroscopic way. Since the successful
preparation of graphene, the employment of 2D materials has become a possibility, triggering a boom
in the study of 2D materials. The continuous improvement of 2D material preparation technology [7]
and manipulation of materials at the atomic scale [57,58], have greatly promoted the development
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of 2D materials and 2D devices [59–62]. 2D materials are widely applied in nanoelectronics and
optoelectronics due to their outstanding optical, electronic, and other physical properties [63].
The multiplicity of the types and properties of 2D materials provide a broad space for the development
of thermoelectricity. The two-dimensionalization of materials, for one thing depending on increasing
the density of states near EF (Fermi level) to enhance the Seebeck coefficient, for another using
the interface scattering of phonons to reduce the thermal conductivity, is advantageous for the
improvement of TE performance. In recent years, graphene [64,65], transition metal dichalcogenides
(TMDs) [66–70], MXenes [15,71,72], etc. were found to possess excellent TE performance, paving the
way for further exploration of 2D TE materials.
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2016, Multidisciplinary Digital Publishing Institute (MDPI). (MXenes) Reproduced with permission
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Copyright 2014, Nature Publishing Group. (Others) Reproduced with permission from [78]. American
Association for the Advancement of Science.



Molecules 2019, 24, 88 6 of 25

2.4. Advancement of 2D TE Materials

Advancement of 2D TE materials is the most representative example in term of the strategy
of reducing the dimensionality to increase ZT. Thin-film materials as a class of 2D materials, are
widely studied for their excellent TE performance and have made great progress in enhancing TE
performance. In 2001, Venkatasubramanian et al. first reported on a Bi2Te3/Sb2Te3 superlattice film
material prepared by metal organic chemical vapor deposition, which increases the ZT up to 2.4 [79].
Subsequently, Harman et al. used a molecular beam epitaxy technique to prepare a PbSe0.98Te0.02/PbTe
quantum dot superlattice film with a ZT of 2.0 or higher at 300 K in 2002 [80]. Until now, superlattice
films remain one of the most attractive research directions in the field of thermoelectrics. In 2017,
Tian et al. presented an exfoliation-and-reassembly approach to produce a flexible N-type TiS2/organic
superlattice film for low-temperature TE applications, which shows a high power factor (S2σ) after
annealing under vacuum [81]. Al2O3/ZnO superlattice film [82] and V-telluride superlattice thin
films [83] were reported in succession, and they show promising TE performance.

Besides superlattice films, the development of layered 2D TE materials is also endless. Sharma
et al. studied the TE properties of 2D telluride (Te) by first principles calculations and semiclassical
Boltzmann transport theory, and the maximum ZT = 0.8 was achieved [13]. Monolayer PdSe2

was investigated by Qin et al. and its ZT reached 1.1 along the x direction for P-type doping at
room temperature [84]. The TE properties of 2D InSe, SnSe, Pb2Se3, MoS2, and GeAs2 were also
studied through theoretical and experimental studies in recent years [14,20,67,85–88]. As it is shown
in Figure 3a, the development of TE materials has been rapid in recent years. In the theoretical
category, ZT has reached and exceeded 2.5, and 2D materials such as SnSe, Cu2S and BiCuSeO have
contributed greatly.
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Figure 3. TE figure of merit (ZT) of materials. (a) Representation of the maximum ZT values of various
2D and traditional TE materials. Among them, SnSe [87], Cu2S [89], Cu2Se [90], and BiCuSeO [91] are
investigated to have 2D or quasi-2D characteristics. Reproduced with permission from [46]. Copyright
2017, American Association for the Advancement of Science. (b) Comparison histogram of ZT values
for diverse configuration of MoS2, WS2, MoSe2, and WSe2 studied by theoretical calculation. Here
(10,0) and (6,6) are from the nomenclature representing armchair and zigzag single-wall Transition
metal dichalcogenide nanotube (TMDNT). The different colors of columns refer to the extent of ZT
value. From this histogram, one can see monolayer TMDs have a perfect ZT value clearly. Reproduced
with permission from [67]. Copyright 2015, American Chemical Society.

Figure 3b is a comparison histogram of ZT for diverse TMD configurations, showing that
monolayer TMDs acting the typical 2D TE materials, possess perfect TE performance with high
ZT, and the maximum ZT is close to 1 [67]. Although the ZT values of 2D TE materials are currently
still unable to reach that of the state-of-the-art nanocomposites and bulks, there are some advantages in
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2D materials. (1) The interdependencies among the parameters of ZT in 2D materials can be decoupled
to a certain degree discussed above, which is beneficial to optimize the ZT by decreasing the thermal
conductivity due to phonon interface scattering. 2D TE materials have great room for improvement.
(2) 2D materials are excellent for studying flexible, stretchable, and skin-friendly devices, which
in conjunction with thermoelectricity, will facilitate the development of, for example, self-powered
devices and TE sensors. (3) 2D TE materials enable the fabrication and application of miniaturized
and integrated devices. It is worth mentioning that, the chip heat dissipation problem has become
a major factor in limiting the development of integrated circuits (IC). 2D TE materials are able to be
integrated into IC chips and take advantage of the waste heat supplying electricity for IC, accelerating
the advancement of IC industry. All of the above signs indicate that the 2D TE materials are competitive
candidates in the field of future thermoelectricity.

The ZT parameter for evaluating the performance of TE materials is conventionally obtained by
measuring the thermal and electrical conductivities, the Seebeck coefficient of the TE material at a
certain temperature. The measurement of the ZT in the bulk materials is relatively facile. Nevertheless,
the test method of ZT for the film and the superlattice TE materials has higher requirements in
terms of technology and sample preparation. Thus, a specially designed technique is required
urgently. However, so far, a universal standard of systematically measuring ZT of 2D materials
is still lacking owing to the experimental difficulties of precise control in samples and high demands on
the apparatus. In 2018, Wang et al. summarized the instruments for measuring the Seebeck coefficient
of thin-film thermoelectric materials [92]. For measuring thermal conductivity of 2D materials, the
Raman spectroscopy technique is an effective method due to its non-destructive properties and
simple operation. Besides, the time-domain thermoreflectance (TDTR) technique has also become a
popular method in measuring thermal conductivity of films and micro-sized materials in recent years.
They all have their own challenges and advantages. For instance, TDTR is an attractive approach to
measuring the challenging interface thermal conductivity of dissimilar materials, and has an ultrafast
measurement speed. Nevertheless, it has been challenging to measure thermal conductivity along
different directions and its measurement process is relatively complex [93,94]. In contrast, the Raman
method of measurement is much simpler.

3. Raman Technique

3.1. The Principles of Raman Spectroscopy

Raman spectroscopy is a technique used to identify molecules, study chemical bonding,
characterize microstructures of materials, measure thermal conductivity, etc. by measuring the
frequency shift of inelastic scattered light from the sample based on their unique vibrational
characteristics (fingerprints). The Raman scattering effect was predicted first theoretically by Smekal
in 1923 and discovered by C.V. Raman in an experiment in 1928 [95], which is the basis of Raman
spectroscopy. In the 1960s, a single-wavelength sources became possible owing to the advent of
lasers, which promoted the experimental applications of Raman spectroscopy. Figure 4a illustrates
the principle of elastic (Rayleigh) and inelastic scattering. When an incident light ray focuses on the
sample through the microscope objective at a defined magnification, Rayleigh scattering, fluorescence,
anti-Stokes and Stokes Raman scattering are produced [96]. Among them, fluorescence is harmful to
Raman spectroscopy, and is usually suppressed. Anti-Stokes and Stokes Raman scattering is collected
by a detector and their diagrammatic sketch is presented in Figure 4b. When an incident lightbeam
focuses on the samples, photons interact with chemical bonds or electronic clouds and produce an
oscillating polarization in the molecules, exciting the electrons to the virtual energy levels. As it is
shown in Figure 4b, electrons on virtual energy levels transfer to the original energy level and emit
photons due to the instability of electrons on virtual energy levels, which process is called Rayleigh
scattering. There is no energy change in Rayleigh scattering. Rayleigh scattering does not carry related
information about sample molecules, which is different from Raman scattering. Anti-Stokes and
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Stokes Raman scattering is inelastic scatting, in which the transition energy of electrons excited by
incident photons are different from the energy of emitted photons of light. In Stokes Raman scattering,
the frequency of the incident photons is higher than the emitted photons, meaning that the incident
photons have a higher energy than emitted photons, while in anti-Stokes scattering, the incident
photons are of lower energy than emitted photons. Besides, the intensity of anti-Stokes scattering is
weaker than Stokes scattering, so Stokes scattering is more remarkable in experiments. Figure 4c shows
a typical setup of the confocal micro-Raman spectroscopic system. The sample to be tested is placed
on the sample stage, and the information of Raman scattering (mainly Stokes scattering) produced by
the system is gathered by the final detector [97].

Through subsequent analysis using a computer system, the Raman spectrum with the appearance
as shown in Figure 4e is obtained. Figure 4d illustrates the optical vibration modes of TMDs, which
can be characterized by Raman spectroscopy. Different vibration modes store different molecules
information, which can be reflected in Raman spectra. A1g and E2g are two typical vibration modes
in TMDs. The positions of Raman shift of A1g peak or E2g peak are analyzed and used to clearly
distinguish single and few layered TMDs as shown in Figure 4e.
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(d) Optical vibration modes of 2H-MoS2 and monolayer MoS2. TMD (MX2) have three polytypes
according to their lattice structure, including 1T-, 2H-, and 3R-polytype. Here the model diagram of
2H-polytype is presented, in which the lattice vibrational mode A1g corresponds to the out-of-plane
relative motion of X atoms and E2g corresponds to the in-plane opposing motion of M and X atoms.
A1g and E2g of Raman spectrum are presented in the following diagram. Reproduced with permission
from Ref. [98]. Copyright 2014, American Physical Society. (e) The Raman spectrum of single (solid red
line) and few (more than 10) layers (dash blue line) MoSe2/MoS2. It can be clearly seen that both A1g

and E2g modes are frequency shifted due to changes of the layer. Reproduced with permission from
Ref. [99]. Copyright 2012, American Chemical Society.

3.2. Application of Raman Spectroscopy

Raman spectroscopy is a non-invasive and non-destructive technique, which requires almost no
sample treatment, being suitable for solid state, aqueous conditions and gas phase, as well as film
samples. Thus, the applications of Raman spectroscopy are greatly expanded. At present, Raman
spectroscopy has a wide range of applications in the fields of chemistry, biomedicine, physics, and so
on [100–102]. Raman spectroscopy is also made great contributions to the study of TE materials [103].
With the increasing technical requirements, Raman spectroscopy has now developed into multiple
branches, e.g., resonance Raman spectroscopy, surface enhanced Raman spectroscopy [104,105], tip
enhanced Raman spectroscopy [106], and micro Raman spectroscopy etc. Micro-Raman spectroscopy
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is one of the most important techniques to characterize nanomaterials, which can identify the number
of layers of film materials [107], analyze the vibration modes of 2D materials in diverse case [71], and
measure the thermal conductivity [22,108–110].

3.3. Raman Spectroscopy for Measuring Thermal Conductivity of 2D Materials

As one of the main parameters for characterizing TE performance, the thermal conductivity has
been measured by employing Raman spectroscopy on some layered materials. The following sections
discuss graphene, h-BN, BP, and TMDs in details.

3.3.1. Graphene

Graphene is a single layer of carbon atoms bonded through sp2 hybridization with regular
hexagonal honeycomb crystal structure exfoliated from graphite. The model diagram of graphene
is shown in Figure 2. Graphene has attracted tremendous attention since its successful preparation,
owing to its excellent optical [111], electrical [5], mechanical [112], and thermal properties [22,113].
Recently, graphene has also triggered great interest as a new type of TE material and led to a
prosperous development [64,114–116]. However, its application in thermoelectrics is limited by
the high thermal conductivity and the low Seebeck coefficient due to its gapless spectrum. Hence a
series of methods for optimizing TE performance of graphene by enhancing its Seebeck coefficient
or decreasing the thermal conductivity have emerged, including modification of graphene band
structure, nanostructures [115,117], doping, and graphene-based polymer nanocomposites and so
on [118,119]. That makes graphene a promising TE material and promotes its applications [120], such
as TE cooling [121].

Raman spectroscopy as a versatile tool, provides a novel method in measuring the thermal
conductivity and promotes the development of graphene on thermoelectricity in experiment. Before
2008, although a large number of theoretical studies showed that graphene has a high thermal
conductivity [122,123], which has not been confirmed experimentally due to the lack of conventional
methods for measuring 2D materials.

Balandin et al. developed noncontact micro-Raman spectroscopy to measure the thermal
conductivity of graphene according to the temperature dependence of the frequency of G peak in the
Raman spectra [22,124–128]. The schematic setup of the experimental device is shown in Figure 5a
and details are shown in Figure 5b,c for clarity. The focused laser light exposes on the middle of
suspended single-layer graphene (SLG), forming a hot spot and diffusing around by heat waves, which
produces a stable temperature gradient on the graphene. At the same time, the laser is also acted as
an incident source for Raman spectroscopy, and the Raman spectrum of SLG is gained by analyzing
Raman scattering light, which is shown in Figure 5d. The position of G and 2D peaks are ~1583 cm−1

and ~2700 cm−1 at room temperature, respectively. When the laser power changes, the position of the
peak will also change. Figure 5e is the Raman spectrum of G peak at two different laser powers and
shows the weak evolution of Raman shift of G peak. For the graphene suspended on trench shown
in Figure 5b, when the laser hot spot is much smaller than the width of the SLG sample, it can be
considered that the heat waves move in two opposite directions toward the trench edges, assuming
that temperature of the trench edges is consistent with the heat sink and room temperature. Then, the
thermal conductivity of the sample can be expressed as:

κ =
d

2A
·∆P
∆T

(8)

where d is the distance from the middle of the suspended SLG to the heat sink with the temperature
ambient T and cross-sectional area A = h×W (h and W is the thickness and width of SLG, respectively).
Thus, the thermal conductivity of SLG will be calculated if the laser power absorbed ∆P by SLG and
the resulting local temperature rise ∆T are measured out. The success of this work is benefited from a
previous work on graphene by Calizo et al. This work demonstrated that the frequency of G peak in
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the Raman spectra of graphene on Si/SiO2 substrates is dependent on temperature, concluding the
relation of:

ω = ω0 + χTT (9)

where ω and ω0 are the frequencies of the G peak at temperature T and T extrapolated to 0 K,
respectively. χT is temperature coefficient, which defines the slope of the dependence [124]. In this
work, χT was calculated by the fitted straight dash line slope in Figure 5f. Through the processing of
relation (8) and (9), the thermal conductivity can be expressed as:

κ = χT ·
d

2hW
·( δω

δp
)
−1

(10)
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Figure 5. The group diagram for measuring the thermal conductivity of single graphene by
micro-Raman spectroscopy. (a) Schematic of experiment model for measurement. In this schematic,
the focused laser light exposure on a graphene layer suspended across a trench producing a hot spot
and being incident light of Raman spectroscopy. The heat sink is graphitic layer to ensure good heat
dissipation at the edge of the layer of graphene. Reproduced with permission from [22]. Copyright 2008,
American Chemical Society. (b) The vertical scanning electron microscopy image of the suspended
graphene flakes where one can clearly see the trench and suspended graphene. (c) The front view
of experiment model. In this schematic, one can more clearly see that a hot spot generates heat
waves inside single-layer graphene (SLG) propagating toward heat sinks. In addition, the silicon
substrate and the upper silicon oxide are also given for clarity. Reproduced with permission from [125].
Copyright 2008, American Institute of Physics. (d) Raman spectrum of suspended graphene showing
the G peak (at ~1583 cm−1) and 2D peak (at ~2700 cm−1) at room temperature excited at 488 nm.
(e) Raman spectrum of G peak at two different laser power. The red and blue lines represent 0.950 and
2.168 mW, respectively. Weakly evolution of Raman shift of G peak occurs in different laser power.
(f) Temperature dependence of the G peak frequency for the single layer graphene. The solid square
black spots are experimental data of G peak position at a certain temperature and the fitted straight
dash line slope is the temperature coefficient which is −0.016 cm−1/◦C Reproduced with permission
from [124]. Copyright 2007, American Chemical Society. (g) The G peak position shift dependence
of total dissipated laser power excited at 488 nm. The fitted straight dash line slope is the power
coefficient. The inserted chart illustrates a method of fitting data using linear regression equations
where the values of parameter A and B are given. Reproduced with permission from [22]. Copyright
2008, American Chemical Society.
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The above equation involves the changes of G peak frequency with laser power absorbed by
SLG—δω/∆p, which is the only unknown factor in the equation at present. Figure 5g is the G peak
position shift dependence of total dissipated laser power, in which the fitted straight dash line slope is
δω/δPD (or χP), where PD is the total laser power, and PD = P + PSi, where PSi is laser power absorbed
by Si. The amount of the power P absorbed by the suspended graphene can be evaluated through the
calibration procedure with pyrolytic graphite (for detailed steps, see [22]). Thus, through the above
process, the thermal conductivity about 5300 ± 480 W·m−1·K−1 of graphene at room temperature is
obtained, which was the first time the challenge of measurement on thermal conductivity of graphene
experimentally was overcome [22].

In addition, Chen et al. used micro-Raman spectroscopy to measure the thermal conductivity of
monolayer graphene of variable sizes in vacuum and gaseous environments in 2011, which values
range from (2600 ± 900) to (3100 ± 1000) W·m−1·K−1 near 350 K [129]. Lee et al. also measured the
thermal conductivity in suspended pristine graphene by Raman spectroscopy in 2011, which values
range from ~1800 W·m−1·K−1 near 325 K to ∼710 W·m−1·K−1 at 500 K [130]. These successes of
experiments on measuring thermal conductivity by Raman spectroscopy pave a new way to measure
TE performance of 2D TE materials, and are vital to the advancement of 2D thermoelectricity.

3.3.2. h-BN

Boron nitride (BN), which exists in Nature, consists of equal numbers of boron (B) and nitrogen
(N) atoms [131]. h-BN is one form of the BN, which is the most stable BN phase under ambient
conditions [132]. An atomic model of h-BN is shown in Figure 2. As it is shown, h-BN is one
kind of 2D materials, which has a layered crystal structure with alternating B and N atoms. It is
also called “white graphene” as a single-layer h-BN nanosheet can be regarded as a graphene
analogue [7]. Similar structures often lead to some common features, such as high mechanical strength
and thermal conductivity, as well as good lubrication [132]. There are also many properties distinct
from graphene in h-BN, and it is significant to explore these dissimilarities and employ them in what
is not applied in graphene. The most striking difference is that h-BN possesses a huge bandgap while
graphene is gapless, so that it can act as an insulating layer or dielectric substrate [133]. h-BN was
rarely investigated separately as TE materials due to its intrinsic properties about the low electrical
conductivity and the high thermal conductivity.

The thermal conductivity of atomically thin h-BN has been explored [108,110,134–138],
experimentally. It can reach to 484 W·m−1·K−1 in bilayer h-BN as measured by suspended prepatterned
microstructures [137], and around 360 W·m−1·K−1 in 11-layer h-BN measured by a microbridge
device with built-in thermometers [138] at room temperature. Zhou et al. reported an experiment
that used noncontact micro-Raman spectroscopy as another excellent method to measure thermal
conductivity of layered h-BN in 2014 [108]. Raman spectroscopy plays an important role in evaluating
the thermal conductivity of thin h-BN sheets. Figure 6a shows the schematic of an experimental setup
for measuring the thermal conductivity of h-BN sheets by micro-Raman spectroscopy. A 514.5 nm laser
excited with a ~1 µm spot size is focused on the middle of suspended layered h-BN under ambient
conditions, depending on golden heat sink to dissipate heat and maintain a stable temperature gradient.
For evaluating the thermal conductivity, there are two parameters that should be measured by this
setup according to Equation (10). The first is the first-order temperature coefficient χT in the Raman
scattering. On the basis of the results described in [108], the Raman E2g mode red-shifts of layered
h-BN are sensitive to surrounding temperature, in that Raman E2g mode peak shifts 4.0 cm–1 with
the temperature increasing from 313 to 433 K as it shown in Figure 6b. The temperature-dependent
peak frequency of E2g mode of single-layer h-BN is shown in Figure 6c, and from the fitted line,
first-order temperature coefficient χT is obtained. The other parameter for the thermal conductivity
measurement of h-BN is the dependence of the Raman E2g mode frequency on the laser power δω/δP
(χP). Figure 6d is the image of E2g mode peak frequency as a function of the laser power, and the
δω/δP can be extracted from the slope of fitted line. Then, based on acquiring the ratio of laser power
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absorbed by h-BN, the thermal conductivity can be calculated in the range from 227 to 280 W·m−1·K−1

at room temperature.
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Figure 6. The group diagram for measuring the thermal conductivity of single layered h-BN sheet by
micro-Raman spectroscopy. (a) Schematic of experiment model for measuring the thermal conductivity
of h-BN. (b) Raman spectrum of single layer h-BN at different temperature where Raman frequency
evolution of Raman E2g mode with a variety of temperature is clearly seen. (c) and (d) present
temperature- and laser power-dependent peak frequency of E2g mode in suspended h-BN sheets,
respectively. The explanation of the fitted lines and inserted chart are similar to Figure 5. Reproduced
with permission from [108]. Copyright 2014, Springer International Publishing.

3.3.3. BP

BP is an emerging 2D material with potential applications in electronics and
optoelectronics [139–145]. BP is a layered material as shown in Figure 2, in which individual
layers stack together through the van der Waals force, much like bulk graphite, and was also
successfully prepared by mechanical exfoliation. Monolayer BP is composed of a puckered honeycomb
structure, in which one P atom bonds with the other three. The structure of BP is anisotropic
with the zigzag and the armchair directions marked in Figure 7a, which results in its anisotropic
transport properties [7,136,146–148]. Importantly, the bandgap of BP is tunable depending on its
thickness, and is highly sensitive to the plane strain and edge structures on prediction [149,150].
Both the intrinsic in-plane anisotropy and the moderate bandgap of BP also promote considerable
development of TE application [151–157]. In addition, BP is theoretically predicted to be a promising
TE material [154,155,158–160] due to its high carrier mobility [161], large Seebeck coefficient, as well as
relatively low thermal conductivity [109,162], and the experimental research on thermoelectricity of
BP is also in full swing [163].
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However, it is apparent that the experimental research is much less than the theoretical prediction
on thermoelectricity of BP, because experimental measurements are much more complex and difficult.
Raman spectroscopy is a very powerful tool to characterize flakes, and using this technique, previous
studies reported the identification of thicknesses for BP [164]. The present status of Raman spectroscopy
in BP are concluded by Ribeiro et al. [165]. More importantly, Raman spectroscopy is also a perfect
method in measuring thermal conductivity of layered BP [109,162,166], which will lead to a prosperous
advancement in thermoelectricity of BP.
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using micro-Raman technique. (a) Diagram of the lattice structure of BP. Directions of zigzag and
armchair are indicated. (b) Atomic vibrational patterns of Ag

1, B2g and Ag
2 phonon modes from the

front view. (c) Raman spectra of BP at different directions and vibrational patterns. ‘VV’ and ‘VH’
are two configurations standing for different directions of laser polarization to gain the Ag and B2g

vibrational patterns. Zigzag is represented by red lines and armchair is represented by blue lines.
(d) Illustration of experiment model for measuring suspended BP flakes. Here He-Ne laser through
aperture and collecting mirror exposures on the suspended BP laying SiN substrate. (e) The Raman
spectra of BP flakes at 72, 57, 42 and 24 ◦C. The three modes of vibration patterns are marked with
dashed lines in the diagram so that the Raman shift of them are clearly visible. (f) The Ag

2 Raman shift
as a function of temperature under armchair- and zigzag-polarized laser. The fitted straight dash line
slopes are the temperature coefficients. (g) The temperature rise as a function of absorbed laser power
of BP film along armchair and zigzag directions. Reproduced with permission from [109]. Copyright
2015, Nature Publishing Group.

The measurement of suspended layered 2D materials by micro-Raman spectroscopy was
presented in graphene and h-BN above, whereas BP possesses anisotropic properties and need to
distinguish the zigzag and armchair axes using polarized Raman spectroscopy firstly, which was
also used by Wu et al. [167] and Ribeiro et al. [168] in 2015 on BP. Figure 7b is the diagram of Raman
vibration modes of BP, including in-plane Ag

1 and Ag
2 mode, as well as the out-of-plane B2g mode in

front view. The different directions show different intensity ratios of Ag
2 to Ag

1, where the Ag
2/Ag

1

becomes larger (~2) with armchair-polarized laser excitation and smaller (~1) with zigzag-polarized
laser excitation as shown in Figure 7c, which serves as Raman signatures of armchair and zigzag
lattice axes and is a basis of studying the anisotropic thermal conductivity of BP. Figure 7d is the
illustration of the experimental setup of micro-Raman spectroscopy. By collecting and analyzing the
Raman scattering light of the sample, the changes of Raman shift with laser power can be figured out.
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In addition, the Raman spectra of BP at different temperature are shown in Figure 7e, from which we
can fit straight lines of the Ag2 mode in zigzag and armchair axes as shown in Figure 7f. A series of
Raman spectra can be obtained under various incident laser power settings, which give the laser power
coefficient. In addition to the previously obtained temperature coefficient, the laser-power-dependent
temperature rise of BP film is acquired as shown in Figure 7g, which can be expressed as δT/δPA.
Then, through auxiliary calculations, the thermal conductivity of layered BP is evaluated eventually,
which is about 10–20 W·m−1·K−1 for thin-film BP [109].

3.3.4. TMDs

TMDs, which are semiconductors of the type MX2 (M = W, Mo; X = S, Se, Te), are a burgeoning
class of 2D materials with novel physical properties and are expected to become an alternative to
graphene. TMDs are also layered materials with van der Waals interactions between layers, and a
diagram of their structure is shown in Figure 2. Note that TMDs exist in several structural phases
owing to different coordination spheres of the transition metal atoms, including trigonal prismatic
(2H), distorted octahedral (1T) and dimerized (1T′) phases. TMDs show excellent properties in
electronics, optoelectronics, mechanics, chemistry and thermoelectricity, which will enable TMDs to
have great potential in the future of technology [169–175]. It is interesting to understand the excellent
TE properties of TMDs, which will promote the advancement of thermoelectricity. In recent years,
there have been lots of theoretical studies on the TE properties of TMDs by first-principles and density
functional calculations, as well as semiclassical Boltzmann transport theory, predicting that TMDs
have a competitive TE performance, due to their adjustable electronic properties and high electrical
conductivity confined in their 2D planes [16,66,69,70,175–178]. The low thermal conductivity of TMDs
is also a critical factor resulting in excellent TE performance, which is from 0.05 to 62.2 W·m−1·K−1 in
different experiments reviewed by Wang et al. in 2017 [136]. In these experiments, Raman spectroscopy
acts a pivotal part in the measurement, especially in MoS2 and WS2. The following emphasizes on the
measurement of MoS2 by Raman spectroscopy.

MoS2 is one of the most stable layered TMDs, and it has achieved remarkable results in terms
of electronic, optoelectronic devices [169,179,180], as well as thermoelectricity [88,181]. Previous
works provided a detailed process on measuring thermal conductivity of suspended layered MoS2

by micro-Raman spectroscopy [110,182–184]. Figure 8a is the schematic of the experiment setup and
Figure 8b is the sectional view of 8(a) for clarity. In this experiment, due to the low thermal conductivity
of MoS2, there is a porous Si3N4 plate with the holes 1.2 µm suspended on SiO2/Si substrate, and
the MoS2 sheet was placed thereon, as shown in Figure 8b. At different temperature, the atomic
vibrational modes of MoS2 changes, which contribute to Raman spectra offset as shown in Figure 8c.
According to the offset, Figure 8d gives the temperature dependence of Raman peak frequencies from
100 to 320 K for the A1g and E2g

1 modes. By the fitted slopes, the temperature coefficient can be
calculated. Then, from the offset of Raman spectra of the two modes at different laser power shown
in Figure 8e, the Raman peak frequencies as a function of laser power are obtained, which show in
in Figure 8f. By the fitted slopes, the laser power coefficient can be calculated. Finally, the resulting
thermal conductivity κ = (34.5 ± 4) W·m−1·K−1 of MoS2 at room temperature is evaluated on the basis
of the temperature coefficient and laser power coefficient.

The Table 1 summarizes the above data.
From the table, one can clearly see that the thermal conductivities of graphene and h-BN are

much more than those of BP and MoS2. Therefore, the laser power is lower in the experiment of
BN and MoS2 to avoid local overheating and sample damage. The magnitude of the temperature
coefficient is same, which may depend on the similarity of the mechanism of temperature influencing
the phonon vibration modes. By analyzing the processes of measuring thermal conductivities of
graphene, h-BN, BP, and MoS2 employing Raman spectroscopy, a promising method in evaluating
the thermal conductivity of 2D materials is obtained, which paves the way for efficient thermal
management in 2D layered materials.



Molecules 2019, 24, 88 16 of 25

Molecules 2019, 24, x 15 of 25 

TE properties of TMDs, which will promote the advancement of thermoelectricity. In recent years, 
there have been lots of theoretical studies on the TE properties of TMDs by first-principles and 
density functional calculations, as well as semiclassical Boltzmann transport theory, predicting that 
TMDs have a competitive TE performance, due to their adjustable electronic properties and high 
electrical conductivity confined in their 2D planes [16,66,69,70,175–178]. The low thermal 
conductivity of TMDs is also a critical factor resulting in excellent TE performance, which is from 0.05 
to 62.2 W·m−1·K−1 in different experiments reviewed by Wang et al. in 2017 [136]. In these experiments, 
Raman spectroscopy acts a pivotal part in the measurement, especially in MoS2 and WS2. The 
following emphasizes on the measurement of MoS2 by Raman spectroscopy. 

MoS2 is one of the most stable layered TMDs, and it has achieved remarkable results in terms of 
electronic, optoelectronic devices [169,179,180], as well as thermoelectricity [88,181]. Previous works 
provided a detailed process on measuring thermal conductivity of suspended layered MoS2 by micro-
Raman spectroscopy [110,182–184]. Figure 8(a) is the schematic of the experiment setup and Figure 
8(b) is the sectional view of 8(a) for clarity. In this experiment, due to the low thermal conductivity of 
MoS2, there is a porous Si3N4 plate with the holes 1.2 μm suspended on SiO2/Si substrate, and the 
MoS2 sheet was placed thereon, as shown in Figure 8(b). At different temperature, the atomic 
vibrational modes of MoS2 changes, which contribute to Raman spectra offset as shown in Figure 8(c). 
According to the offset, Figure 8(d) gives the temperature dependence of Raman peak frequencies 
from 100 to 320 K for the A1g and E2g1 modes. By the fitted slopes, the temperature coefficient can be 
calculated. Then, from the offset of Raman spectra of the two modes at different laser power shown 
in Figure 8(e), the Raman peak frequencies as a function of laser power are obtained, which show in 
in Figure 8(f). By the fitted slopes, the laser power coefficient can be calculated. Finally, the resulting 
thermal conductivity κ = (34.5 ± 4) W·m−1·K−1 of MoS2 at room temperature is evaluated on the basis 
of the temperature coefficient and laser power coefficient. 

 
Figure 8. Thermal conductivity measurements of MoS2 using micro-Raman technique. (a) Illustration 
of the experimental setup for measuring. (b) The sectional view of (a). Here suspended monolayer 
MoS2 over the holes in the 20 nm thick Si3N4 on SiO2/Si substrate is presented. (c) The Raman spectra 
of suspended monolayer MoS2 at 320, 260, 180 and 100 K. The atomic vibrational modes of in-plane 
E2g1 and out-of-plane A1g are inserted in the diagram for clarity. (d) Raman peak frequencies of both 
Raman A1g and E2g1 modes as a function of temperature. The fitted slope resulting linear temperature 
coefficients are shown. The blue line is the A1g mode and red line is the E2g1 mode. (e) The Raman 
spectra of suspended monolayer MoS2 at laser power of 0.164, 0.104, 0.059 and 0.040 mW, respectively. 
The atomic vibrational modes of A1g and E2g1 are inserted in the diagram for clarity. (f) Raman peak 
frequencies of both Raman A1g and E2g1 modes as a function of temperature. The fitted slope resulting 

Figure 8. Thermal conductivity measurements of MoS2 using micro-Raman technique. (a) Illustration
of the experimental setup for measuring. (b) The sectional view of (a). Here suspended monolayer
MoS2 over the holes in the 20 nm thick Si3N4 on SiO2/Si substrate is presented. (c) The Raman spectra
of suspended monolayer MoS2 at 320, 260, 180 and 100 K. The atomic vibrational modes of in-plane
E2g

1 and out-of-plane A1g are inserted in the diagram for clarity. (d) Raman peak frequencies of both
Raman A1g and E2g

1 modes as a function of temperature. The fitted slope resulting linear temperature
coefficients are shown. The blue line is the A1g mode and red line is the E2g

1 mode. (e) The Raman
spectra of suspended monolayer MoS2 at laser power of 0.164, 0.104, 0.059 and 0.040 mW, respectively.
The atomic vibrational modes of A1g and E2g

1 are inserted in the diagram for clarity. (f) Raman
peak frequencies of both Raman A1g and E2g

1 modes as a function of temperature. The fitted slope
resulting linear power coefficients are shown. Reproduced with permission from [110]. Copyright 2014,
American Chemical Society.

Table 1. Comparison of the thermal conductivity measurement parameters of different layered samples
by Raman spectroscopy at room temperature.

Sample Trench Width
(Hole Diameter) χT (cm−1/K) χP (cm−1/mW) κ (W m−1 K−1) Ref.

Graphene 3 µm −0.0162 ± 0.0020 −1.29 ± 0.11 5300 ± 480 Balandin et al. [22],
Calizo et al. [124]

h-BN 7 µm −0.0341 ± 0.0012 −1.13 ± 0.12 227~280 Zhou et al. [108]

BP - * Armchair −0.019~0.024
Zigzag −0.022~0.028 - * 10~20 Luo et al. [109]

MoS2 1.2 µm
A1g −0.013 ± 0.001
E2g

1 −0.011 ± 0.001
A1g −10.9 ± 0.4
E2g

1 −12.8 ± 0.2
34.5 ± 4 Yan et al. [110]

* The trench width and χP of BP are not provided in Ref. [109].

4. Conclusions and Outlook

In summary, 2D TE materials, which have been explored and studied widely in the past few
years, will become a promising direction on optimizing TE performance. Similar to bulk materials, the
measurement on TE performance of 2D materials also involves the electrical and thermal conductivities,
as well as the Seebeck coefficient of specimen. Raman Spectroscopy is a precise and powerful method
in materials characterization, which is known as a spectroscopic ‘Swiss-Army Knife’. The measurement
of the thermal conductivity of 2D materials has been achieved by Raman spectroscopy. Based on it,
making an electric test on the specimen in the Raman resting environment at a controllable temperature,
obtaining the ∆V/∆T, and ∆V/∆I, which contributes to calculate the Seebeck coefficient and electrical
conductivity, respectively. Eventually, the ZT of 2D TE materials will be evaluated by Equation (3).



Molecules 2019, 24, 88 17 of 25

It is worth mentioning that, measuring ZT by Raman Spectroscopy combined thermal properties with
electrical properties in bulk materials was achieved by Chen et al. and Yu et al. in recent years [185,186],
which boosts the advancement of TE research. Extending it to the field of 2D materials will further
promote the development of thermoelectricity.

Nevertheless, some challenges still remain in the 2D TE materials and the measurement of
their performances:

(1) Advancement of 2D TE materials. Studies on 2D TE materials are still in their infancy, so the
actual TE performances in the experiments or devices are not ideal enough, and the practical
applications are still limited. It is necessary to continue to develop 2D TE materials and promote
their performance. To note, high pressure applied to materials can strikingly improve TE
performance [185–187], which provides a meaningful idea for advancement of 2D TE materials.

(2) The measurement of electric properties of 2D materials. It is difficult to accurately measure the
electric properties of 2D materials due to the miniaturization of the scales.

The last few years have witnessed the exciting development of TE materials, in which Raman
spectroscopy has undoubtedly made a great contribution, especially for 2D TE materials. With
unremitting efforts and struggles of researchers, Raman spectroscopy will boost further advancements
of TE materials, contributing to resolving the contradiction between energy waste and insufficient
resources in the future.
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