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Recent advances in the study of thermoelectric materials mainly focus on the developments or

designs of methods to reduce thermal conductivities. The information of phonon scattering

processes is the key to the understanding of the thermal transfer and transport of a material. Such

information is essential for the understanding of the thermal conductivity of a material itself and

for the further improvement to demand the requirements for technological applications. Recently,

palladium sulfide has been examined as a potential thermoelectric material. However, the high

thermal conductivity limits its thermoelectric performance and technological applications. Here,

Raman scattering spectroscopy is used to investigate the thermal transport properties of this

material over a wide range of temperatures. The nonlinear temperature-dependent frequencies and

linewidths of the Raman modes illustrate the anharmonicity of phonon scattering for thermal trans-

port in this material. Three-phonon scattering processes are found to account for the thermal trans-

port in the temperature range of 10–620 K. The high-energy bands of the Bg mode related to the

light atom (S) contribute most to the thermal transport properties. More phonon scattering pro-

cesses including higher orders are seemingly needed to further reduce the thermal conductivity of

this material. Published by AIP Publishing. https://doi.org/10.1063/1.5041973

High performance thermoelectric materials have been

explored for many years, to meet the urgent demand for

green energy resources. The efficiency of thermoelectric

materials is determined by the dimensionless figure of merit

zT (zT ¼ S2rT=j), where S is the Seebeck coefficient, r is

the electrical conductivity, T is the absolute temperature, and

j is the thermal conductivity.1–5 Recently, the thermoelectric

sulfides have attracted significant research interest because

of their extraordinary thermoelectric performance and

the cheaper and earth abundant element of sulfide.6,7 For

instance, the copper sulfide shows high efficiency with zTs
¼ 1.4–1.7 at 1000 K.8 Lead sulfide, which is the least studied

among lead chalcogenides, shares good thermoelectric per-

formance with zT � 1 at 1000 K.9 Some other materials like

MS (M¼Bi, Sn, Zn, and Ca) also share efficient thermoelec-

tric performance.10–12 Palladium sulfide (PdS), which

belongs to transition-metal sulfide, has potential applications

in semiconducting, photoelectrochemical, and photovoltaic

fields, because of its ideal bandgap of 1.6 eV.13–15 Moreover,

superconductivity was also observed in bulk PdS by the

application of pressure.16 Very recently, it was found that the

bulk PdS is a promising potential thermoelectric material

with an intrinsic largest power factor of 27 lW cm�1 K�2

around 800 K among thermoelectric sulfides.17 However, the

relatively high thermal conductivity limits its thermoelectric

performance, even though the thermal conductivity has an

obvious decrease under pressure.18 Therefore, finding the

reasons behind the high thermal conductivity in this material

is of great concern.

Generally speaking, j of a normal crystal compound

always has a universal behavior as a function of tempera-

ture.19,20 In detail, j first increases sharply as T3 with increas-

ing temperature at lower temperatures and then decreases as

T�1 or faster with increasing temperature after evolving

through a maximum value at �0.05hD, where hD is the

Debye temperature of the crystal. The high-temperature

behavior of j is mainly determined by the phonon scattering

via umklapp processes.21 Thus, it is necessary to understand

the anharmonic phonon-phonon interactions and further

uncover the mechanisms of phonon scattering in candidate

thermoelectrics for designing materials with low j. Raman

scattering is a powerful technique to characterize the phonon

information near the center of the Brillouin zone. From the

Raman spectrum, one can not only obtain the phonon disper-

sion near the Brillouin zone but also evaluate the phonon

anharmonicity which determines the lattice thermal conduc-

tivity (jlat), especially at high temperatures.22 In detail, the

anharmonicity of the phonon-phonon interactions can be

reflected by the frequency shift or the variation of the full

width at half maximum (FWHM) with temperature of thea)Electronic mail: xjchen@hpstar.ac.cn
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Raman mode.23–25 However, no detailed analysis of the tem-

perature dependent phonon information for PdS was per-

formed until now, especially at high temperatures. Hence, it

is important to analyze the phonon scattering mechanisms

related to the thermal conductivity of PdS by Raman spectra.

This is the goal of the present work.

The sample synthesis was detailed previously.17 For the

Raman system, the scattered light with a wavelength of

488 nm was focused on 1800 g/mm grating and then recorded

with a 1024 pixel Princeton charge-coupled device. The laser

power of 2 mW was used in order to avoid unintentional

additional heating of the sample. The obtained Raman spec-

tra were fitted by using a Lorentzian shape function.26 For

the high temperature system, we used a modified diamond

anvil cell (DAC) with a large anvil culet of 1000 lm in diam-

eter. Two separated resistance heating furnaces were fixed

around the two diamonds in the cell, which could supply a

uniform temperature for the sample chamber. The uniform

temperature around the sample chamber was measured by a

kind of K-type thermocouple with a typical precision of

61 K. The high temperature range is 300–600 K with 10 K

steps. The sample chamber with the diameter of 500 lm was

created in a gasket (T301). A small piece of the sample

(about 50� 50 � 20 lm3) was loaded into the sample cham-

ber. Then, the chamber was closed after loading protecting

gas (97% argon þ 3% hydrogen). For the low temperature

system (10–300 K), a helium continuous flowing cryostat

was used to control temperatures with 10 K steps. The tem-

perature in the cryostat was measured by using a Pt resis-

tance sensor close to the sample with a typical precision of

60.5 K. The size of the sample was about 30� 30� 20 lm3

in the sample chamber.

The crystal structure of PdS is the tetragonal structure

belonging to the space group of P42/m (84) with unit cell

parameters as follows: a¼ 6.44 6 0.005 Å and c¼ 6.62

6 0.005 Å.17 This group has 48 optical modes by theory pre-

diction. Among them, 21 modes are Raman active (6Bg

þ 5Agþ 10Eg), 19 modes are IR active (14Euþ 5Au), and

8 modes are inactive (2Euþ 1Auþ 5Bu). Figure 1(c) shows

the temperature dependent thermal conductivity of PdS. It

can be seen that j first increases sharply with increasing

temperature and then evolves through a maximum value

before finally decreasing roughly in a T�1 relation. This phe-

nomenon indicates that bulk PdS is a normal crystal com-

pound. The emergency of the j peak at low temperatures is

caused by the approximate order between the phonon mean

free path and the dimensions of the crystallite size.27 Here,

the thermal conductivity from the electronic part (jele) can

be ignored, because of the high lattice thermal conductiv-

ity.17 The high-temperature behavior of jlat is mainly con-

trolled by the scattering of phonons amongst themselves for

a normal crystal compound.20 Generally, these phonon scatter-

ing processes can be described well by the three-phonon and/

or four-phonon scattering mechanisms.21,28 Figure 1(b) illus-

trates the schematic diagrams of both three-phonon and four-

phonon scattering processes, respectively. In order to provide

a further understanding about the evolution of jlat at high tem-

peratures, we now take a closer look at the phonon scattering

processes with the help of the temperature-dependent Raman

spectra in the temperature range of 10–620 K.

Figure 2 shows the experimentally observed Raman

spectra of PdS at room temperature (lower panel) and vari-

ous temperatures from 10 to 620 K (upper panel). The

observed phonon modes have been assigned through theoret-

ical calculations. We can only observe five Bg modes, three

Ag modes, and one Eg mode with the excited laser wave-

length of 488 nm, experimentally. This material displays

strong temperature dependent Raman scattering characteris-

tics. The frequencies of all the observed Raman bands have

progressive downshifts, and the linewidths become broad-

ened with increasing temperature from 10 to 620 K. These

temperature dependent behaviors can be attributed to the

anharmonic terms in the vibrational potential energy.29 In

addition, the spectrum exhibits two pronounced bands

related to the low-energy phonons (�80–160 cm�1) and

high-energy phonons (�300–400 cm�1). Here, the two bands

are primarily caused by the vibrations of the heavy atom

(Pd) and the light atom (S), respectively.30,31 The two pho-

nons of the Ag mode around 134 cm�1 and the Bg mode

around 334 cm�1 are selected as examples to analyze the

phonon scattering processes due to their relatively good peak

shapes and intensities. The Ag and Bg bands are fitted with a

FIG. 1. (a) The crystal structure of PdS

from the top view (along the c axis). (b)

The illustrations of the three-phonon

and the four-phonon anharmonic pro-

cesses contributing to the decay of the

Raman active modes. (c) The tempera-

ture dependence of the thermal conduc-

tivity measured by a Physical Properties

Measurement System (PPMS) and a

laser flash method (Netzsch, LFA 457).
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single Lorentzian function to extract the frequencies and

FWHMs.26 The results are fitted very well. A representative

fitted curve at room temperature can be seen in Fig. 2 (lower

panel).

Based on the fitted results of the Ag mode as shown in

Fig. 3(a), we present the temperature dependences of the fre-

quency and FWHM in Figs. 3(b) and 3(c), respectively. The

evolution of both the frequency and FWHM of this phonon

mode with temperature is similar to the behaviors of Si and

other semiconductors.15,21,32 To give a reasonable descrip-

tion for the temperature dependence of the phonon mode

position, we applied the approach based on the extended

Klemens-Hart-Aggarwal-Lax model.33,34 In this model, the

temperature-dependent Raman mode can be characterized by

the processes of optical phonon decay into two (three phonon

process) and/or three (four phonon process) acoustic pho-

nons [Fig. 1(b)]. This phenomenon results from the cubic

and/or quartic anharmonicity of lattice potential. Thus, the

temperature dependence of the phonon mode position can be

described with the following formula:35

xðTÞ ¼ x0 þ A 1þ 2

ex � 1

� �
þ B 1þ 3

ey � 1
þ 3

ðey � 1Þ2

" #
;

(1)

where x ¼ �hx0=2kBT; y ¼ �hx0=3kBT; �hx0 is the energy of

optical phonon extrapolated to T¼ 0 K, �h is the Planck con-

stant divided 2p, kB is the Boltzmann constant, and A and B

are the anharmonic constants. In the procedure of describing

the evolution of frequency shift with temperature, we found

that the three phonon process is more appropriate for this

description, and the contribution from four-phonon scatter-

ing can be neglected in the studied temperature range. The

four-phonon scattering may play a part at higher tempera-

tures (at least above 620 K). The values of the fitting parame-

ters are listed in Table I.

As shown in Fig. 3(c), the FWHM of the Ag mode

around 134 cm�1 gets broadened with increasing temperature.

The FWHM of the Ag mode has an obvious change with

increasing temperature. It exhibits a nonlinear temperature

FIG. 2. Raman spectra of PdS at various temperatures from 10 to 620 K

(upper panel). The lower panel shows the Raman spectrum at room tempera-

ture. The open cycles are the experimental data points and the curves are the

fitting results by using a single Lorentzian function for each mode.

FIG. 3. (a) Raman spectra of the Ag

mode around 134 cm�1 at various tem-

peratures from 10 to 620 K. The open

cycles are the experimental data points

and the curves are the fitting results by

using a single Lorentzian function for

the mode. Right panels: The tempera-

ture dependence of the frequency (b)

and FWHM (c) of the Ag mode. The

red-solid lines give the theoretical fits

by using the processes of three phonon

scattering.
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dependence. This evolution of the FWHM with temperature

can be fitted according to the following equation:

CðTÞ ¼ C0 þ C 1þ 2

ex � 1

� �
þ D 1þ 3

ey � 1
þ 3

ðey � 1Þ2

" #
;

(2)

where C0 is the peak width at zero temperature, and C and D

are the anharmonic constants. Similar to the peak position, the

FWHM curve also matches very well with the three phonon

process, and the contribution from four-phonon scattering can

be ignored. The fitted parameters are shown in Table I. These

results indicate that the anharmonic phonon-phonon interac-

tions (three phonon process) are responsible for the tempera-

ture dependence of the Ag mode and thus for the reduction of

jlat. In addition, the phonon lifetime (si), which has a close

and direct correlation with jlat, is reciprocal of the FWHM of

the phonon mode according to the following expression:36

si ¼
1

2pFWHMi
:

Thus, the increased FWHM of the Ag mode provides a fur-

ther understanding for the decrease in jlat at high tempera-

tures as observed in Fig. 1(c).

Figure 4 plots the temperature dependence of the Bg

mode around 334 cm�1. Both the frequency and FWHM of

the Bg mode have strong temperature-dependent characteris-

tics. Similar to the evolution of the Ag mode around

134 cm�1, the temperature dependence of the frequency and

FWHM of the Bg mode can be described well with the three

phonon process. Adding the four phonon process does not

improve the fitting to the experimental data. We thus do not

include it in the data analysis for the simplicity. The fitted

parameters are shown in Table I. Compared with the Ag

mode, the Bg mode has relatively large values of A and C.

This case indicates that the Bg mode has stronger anhar-

monic phonon-phonon interactions and thus plays a more

important role in the procedure of decreasing jlat. At the

same time, this conclusion is also confirmed by the phenom-

enon that the FWHM of the Bg mode has a larger change

with temperature than that of the Ag mode. The information

extracted from the Bg mode further supports the viewpoint

that the three phonon process is the main player for the

anharmonicity of phonon scattering in this material.

Furthermore, the studied Bg mode is located at high-energy

bands (�300–400 cm�1) which is related to the vibrations of

the light atom of S. This means that the vibrations of S are

crucial for the thermal transport properties of PdS.

From the experimental data and theoretical models for

both the Ag and Bg modes, we note that the phonons located

at high-energy bands are mainly responsible for the reduction

of jlat with increasing temperature. This process is realized

by the process of optical phonon decay into two acoustic pho-

nons. But the four-phonon processes which may be more

important for decreasing jlat are not observed. Therefore, the

enhancement of phonon anharmonicity becomes very impor-

tant and useful for decreasing the thermal conductivity, such

TABLE I. Summary of the calculated phonon scattering parameters of PdS

from the fits by using Eqs. (1) and (2) to the temperature dependence of the

frequencies and FWHMs of the Ag and Bg modes, respectively.

Mode x0 (cm�1) A (cm�1) B (cm�1) C0 (cm�1) C (cm�1) D (cm�1)

Ag 134.6 �0.71 0 1.4 1.37 0

Bg 333.7 �3.45 0 1.7 3.62 0

FIG. 4. (a) Raman spectra of the Bg

mode around 334 cm�1 at various tem-

peratures from 10 to 620 K. The open

cycles are the experimental data points

and the curves are the fitting results by

using a single Lorentzian function for

the mode. Right panels: The tempera-

ture dependence of the frequency (b)

and FWHM (c) of the Bg mode. The

red-solid lines give the theoretical fits

by using the processes of three phonon

scattering.
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as introducing more anharmonic terms (four-phonon scatter-

ing). Many methods have been proposed to reduce thermal

conductivity, such as doping, alloying, nanostructuring, and

all-scale structures.37–40 Furthermore, we find that applying

pressure is very effective in tuning the thermal conductivity

by increasing the phonon anharmonicity.18,27

Finally, we can conclude that the nonlinear temperature

dependent frequencies and FWHMs are explained well by

the phenomenon of optical phonon decay into two acoustic

phonons. This case illustrated that the evolution of jlat at

high temperatures is dominated by the softening and/or

broadening phonon modes and thus the three-phonon pro-

cesses. The results obtained in this work bring better under-

standing for the temperature-dependent lattice thermal

conductivity. This work will further promise the process of

reducing thermal conductivity for the thermoelectric PdS by

introducing the stronger anharmonicity of phonon scattering.
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