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Abstract
Mesoporous orthorhombic LiMnO2 has been directly fabricated by a one-step fluxmethod in this
work. Benefiting from the uniquemesoporous structure, the orthorhombic LiMnO2 prepared
through calcinating themixture offlux LiOH·H2OandMn2O3with various Li/Mnmolar ratios
shows enhanced lithium storage properties.When used as the cathode for lithium ion battery, the
mesoporous orthorhombic LiMnO2 has been found to exhibit amaximumdischarge capacity of
191.5mAh g−1 and a high reversible capacity of 162.6mAh g−1 (84.9% retention) after 50 cycles at a
current density of 0.1 C rate. These results demonstrate its potential application in high performance
lithium-ion batteries.

1. Introduction

Lithium ion batteries (LIBs) have been extensively investigated as one of themost potential electric energy
storage devices because of their stable cycling lifespan, high energy density and environmental friendliness. They
are promising power sources for portable electronic devices such as digital cameras, laptop computers,mobile
phones, electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1–4]. However, the performance
improvement of LIBs still remains a challenge, which critically depends on the electrodematerials [5]. Hence, it
is urgently needed for the research and development of advanced electrodematerials tomeet the ever-increasing
demands of the sustainable power sources in themodern electronics industry [6–9]. Among various electrode
materials, novel carbon-basedmaterials/composites including activated carbon aerogels [10], hierarchical
porous carbon [11] and graphene@Fe3O4 dots/amorphous carbon [12], have been proposed as potential anode
materials to substitute traditional commercial graphite because of their higher specific surface area, superior
specific capacity, good electrical conductivity and excellent electrochemical stability. As the cathode for LIBs, the
traditional and commercial LiCoO2 cannot fulfill the requirement of high power applications such asHEVs and
EVs in view of its limited specific capacity and poor capacity retention upon long cycling. As a result, other
cathodes such as LiNi0.5Mn1.5O4 [13], LiNi0.76Mn0.14Co0.10O2 [14], LiMnO2 [15] and LiVPO4F/C [16], have
beenwidely explored. Among them, LiMnO2 is one of themost prospective candidates for its considerable
advantages such as abundantMn resources, intrinsic low cost, superior structural stability and environmental
friendliness characteristics [17]. The theoretical discharge capacity of LiMnO2 (285 mAh g−1) is practically twice
higher than that of spinel LiMn2O4 (148 mAh g−1) [18]. Usually, layered LiMnO2 has two crystal structures:
orthorhombic structure andmonoclinic structure [19]. Themonoclinic LiMnO2 is less thermodynamically
stable than the orthorhombic LiMnO2 and is hard to obtain aswell [20]. Therefore, orthorhombic LiMnO2 has
been intensively studied as the potential cathodematerial for LIBs.

Unfortunately, orthorhombic LiMnO2 still suffers fromhuge volume expansion and structural strain during
the charge-discharge process, resulting in a rapid decrease of specific capacity and poor cycling stability, which
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hampers its application in the high-energy storage system. As is well-known, the electrochemical performance of
electrodematerials is closely related to themorphology and structure. As a result, LiMnO2with various
nanostructures andmicrostructures, such asmicrocubes [21], nanoplates [22], nanorods [23], porous
microspheres [24] has been extensively explored to improve the capacity retention and rate performance for
high-power LIBs. In particular, the three-dimensional (3D) porous structures aremore attractive, which is
attributed to the fact that their structural integrity that not only can allow a better penetration of electrolyte but
also buffer the dramatic volume changes [25] during charge-discharge process, bringing inmuch better
electrochemical performance. For example, Lv and his co-workers [26] reported that LiMnO2 porous
microspheres with the pore size of 200–500 nm synthesized by amolten immersionmethod showed a high
reversible capacity of 163 mAh g−1 at a current density of 30 mA g−1 after 30 cycles and superior cyclic retention
rate. Fan et al [24] fabricated porous spherical orthorhombic LiMnO2 via a carbonate co-precipitationmethod,
which delivered amaximumdischarge capacity of 152 mAh g−1 at the 15th cycle and good cycling stability. Lu
et al [27] also reported that the LiMn2O4 porousmicroparticles synthesized using a precipitationmethod
followed by a high temperature calcination exhibited a high coulombic efficiency and an excellent rate
capability. However, these approaches above generally involve complicatedmulti-step procedures, consuming
long time andmuch energy.Hence, an advisable and scalable strategy to synthesizemesoporous orthorhombic
LiMnO2with outstanding electrochemical performance is highly desired.

Herein, we report a facile one-step synthesis ofmesoporous orthorhombic LiMnO2 via afluxmethod. As the
cathode of LIBs, themesoporous orthorhombic LiMnO2 can reach amaximumdischarge capacity of 191.5 mAh
g−1 at a current density of 0.1 C, superior rate capability and good cycling stability. Such significantly improved
lithium storage propertiesmay be rooted in the uniquemesoporous structure, which can remarkably facilitate
the electrolyte infiltration and Li+ intercalation and easily accommodate to the volume changes during the
reversible electrochemical process.

2. Experimental

2.1. Preparation ofmesoporous orthorhombic LiMnO2 cathodematerials
Materials and reagents were of analytical grade and directly used as receivedwithout further purification. The
synthesis ofmesoporous orthorhombic LiMnO2was carried out by a one-stepfluxmethod using LiOH·H2O
andMn2O3 as startingmaterials. In a typical synthesis, 15.75 mmol LiOH·H2Oand 7.5 mmolMn2O3with Li/
Mnmolar ratio of 1.05, were grounded homogeneously for 30 min in an agatemortar. Then thewell-mixed
powders were put into a tube furnace and calcined at 600 °C for 3 h under vacuum. After cooling down to room
temperature, the product waswashedwith distilledwater and thenwas dried at 60 °C in a oven overnight. The
as-prepared sample was labeled as LMO-1. For comparison, LMO-2 sample was preparedwith the same process
mentioned as above except using 25 mmol LiOH·H2Oand 5mmolMn2O3with Li/Mnmolar ratio of 2.50.
Moreover, LMO-3 samplewas preparedwith the same processmentioned as above except using 30 mmol
LiOH·H2Oand 3mmolMn2O3with Li/Mnmolar ratio of 5.00.

2.2.Material characterizations
Powder x-ray diffraction (XRD) patterns were obtained from aRigakuD/MAX2550 diffractometer withCuKα
radiation (λ=1.5418 Å). Scanning electronmicroscopy (SEM) images were takenwith a JEOL JSM-6700F
microscope operating at 5 kV. Transmission electronmicroscopy (TEM) analysis and high resolution
transmission electronmicroscopy (HRTEM) analysis were performed on a FEI Tecnai G2 F20 s-twinD573
transmission electronmicroscopewith an acceleration voltage of 200 kV. The nitrogen adsorption-desorption
measurements were carried outwith aMicromeritics ASAP 2420 surface area analyzer by using Brunauer–
Emmett–Teller (BET)method at 77 K. Pore size distribution plots were obtained from the desorption branch of
the isotherms using the Barrett–Joyner–Halenda (BJH)model.

2.3. Electrochemicalmeasurements
The electrochemical characteristics of the samples were evaluated usingCR2025 coin cells. Theworking
electrodewas prepared bymixing the slurry of obtained orthorhombic LiMnO2 activematerial, acetylene black
and polyvinylidene fluoride (PVDF) binderwith aweight ratio of 8:1:1 inN-methyl-2-pyrrolidone (NMP)
solvent. After stirring for 5 h, the slurry was coated onto an aluminum foil substrate and dried at 120 °C for 13 h
in a vacuumoven, followed by cutting into small disks as cathodes. Themass loading of the activematerial on the
electrodewas 1–2 mg cm−2. Lithiummetal was used as the counter electrode andCelgard 2400microporous
membranewas used as the separator. The electrolyte was 1MLiPF6 in EC/DEC (1:1 v/v). All CR2025 coin-type
cells were assembled in an argon-filled glove box. The galvanostatic charge-dischargemeasurements were
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carried out at room temperature with various current densities in the voltage range of 2.0–4.4 V by the LAND
battery testing system (CT2001A).

3. Results and discussion

Figure 1 displays the XRDpatterns of the as-synthesized LiMnO2 samples. It can be seen that all the diffraction
peaks can be basically indexed to the orthorhombic LiMnO2with a space group ofPmnm, which corresponds to
JCPDSNo. 35-0749.

Moreover, it can be found that the diffraction peaks becomemore intensewith the increase of Li/Mnmolar
ratios from1.05 to 5.00, especially for the (110)peak, demonstrating higher crystallinity. The broader and
weaker (110) peak can be observed for LMO-1 sample, whichmay be related to its smaller crystalline size and
higher degree of disorder [28]. Furthermore, the higher full-width-at-half-maximum (FWHM) value of the
(110) peak indicates that there aremore stacking faults betweenMn and Li sites [29], which directly affects the
electrochemical characteristics. According to the literatures, the orthorhombic LiMnO2with aweak
crystallinity,more stacking faults and smaller crystallites tends to exhibit a higher discharge capacity [30].

Themorphology and structure of the orthorhombic LiMnO2 samples have been further examined by SEM
andTEManalyses. As shown infigure 2, the as-synthesized orthorhombic LiMnO2 samples are assembled by
closely packed primary nanocrystallites with irregularly shaped pores among them. The size of the primary
nanocrystallites is approximately 20–30 nm in diameter. The average size of the aggregated primary
nanocrystallites slightly becomes larger when the Li/Mnmolar ratios increase from1.05 to 5.00, as displayed in
figures 2(a)–(c). Thismay be ascribed to the fact that the increase of the Li/Mnmolar ratio dramatically
accelerates the process of dissolution and recrystallization, leading to the formation of the larger crystallites [31].
To further demonstrate their detailed structures, the obtained orthorhombic LiMnO2 samples were
characterized by TEM. Figure 2(d) depicts the lowmagnificationTEM image of LMO-1 sample.Notably, the
obtained LMO-1 sample is consisted of aggregated primary nanoparticles of approximately 30 nm in diameter
and their extremely rough surfaces are connected together to create a high inter-particle porosity. The
representative high-resolution TEM image of the primary nanoparticles observed from the figure 2(d) inset
indicates that the lattice fringe of the sample is 0.36 nm, corresponding to the (110) plane of the orthorhombic
LiMnO2. This result is in accordance with the XRD analysis.

The porous characteristics and specific surface areas of the as-synthesized LiMnO2 samples were further
explored by nitrogen adsorption-desorptionmeasurements. Figures 3(a), (b) show the nitrogen adsorption-
desorption isotherms and corresponding pore size distributions of the orthorhombic LiMnO2 samples. It can be
seen that the LMO-1 sample has a typical hysteresis loop and itsN2 adsorption quantity ismuch higher than that
of other samples, as observed infigure 3(a), suggesting its abundantmesoporous structure. The BET specific
surface areas of the LMO-1, LMO-2 and LMO-3 sample are 3.99 m2 g−1, 2.25 m2 g−1 and 1.82 m2 g−1,
respectively. Figure 3(b) further confirms that the typical pore size of the LMO-1 sample is around 45 nm,which
is in good agreementwith the SEMandTEManalyses. The improved specific surface area and unique

Figure 1.XRDpatterns of the orthorhombic LiMnO2 samples: LMO-1, LMO-2 and LMO-3.
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mesoporous structure of the LMO-1 samplemay bemore desirable for lithium storage properties, whichmay be
attributed to the fact that the improved specific surface areamay allow better contact area between electrode and
electrolyte, fast Li+ diffusion as well as reduced charge-transfer resistance.Moreover, the hierarchical porous
structure can act as a buffer layer to alleviate the volume expansion of the electrode during the lithiation/
delithiation process.

The electrochemical performance of the LiMnO2 samples for LIBswas further performed by the
galvanostatic charge-dischargemeasurements. Figures 4(a), (b) present the charge-discharge profiles and cyclic
performance of the orthorhombic LiMnO2 samples. Cycling stability tests were carried out at a current density
of 0.5 C in the voltage range of 2.0–4.4 V. As shown infigure 4(a), all of the orthorhombic LiMnO2 samples

Figure 2. SEMandTEM images of the orthorhombic LiMnO2 samples: (a), (d) LMO-1; (b) LMO-2; (c) LMO-3.

Figure 3. (a)N2 adsorption-desorption isotherms and (b) corresponding pore size distributions of the orthorhombic LiMnO2

samples: LMO-1, LMO-2 and LMO-3.
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display two distinct voltage plateaus at around 4 V and 3 V,whichmay be a result of phase transition during the
cycling fromorthorhombic LiMnO2 to spinel phase. The different plateaus represent that Li

+ intercalates on
different sites: tetrahedral site and octahedral site in the cycle-induced spinel LiMn2O4 [32]. From the charge and
discharge profiles, it can be seen that themaximumdischarge capacities of LMO-1, LMO-2 and LMO-3 sample
are 190.0 mAh g−1, 148.3 mAh g−1 and 145.0 mAh g−1, respectively. Clearly, the LMO-1 sample shows
enhanced specific capacity, whichmay be ascribed to its unique small size and interconnected porous network
architectures. As reported previously [33], the capacity loss of the orthorhombic LiMnO2materials wasmainly
due to the decrease of the length in the 3 Vplateau, whichmight be predominantly caused by the collective Jahn-
Teller distortion of the cycle-induced spinel phase [34]. Additionally, the dissolution ofmanganese could
directly lead to defective spinels [35] and poor cycling performance. However, the charge-discharge curves of the
LMO-1 sample show a longer andmore flat 3 Vplateau comparedwith those of other samples, which indicates
that it ismore stable and can better accommodate the volume changes resulting from the phase transformation
during the charge-discharge process. The cycling stability of the orthorhombic LiMnO2 samples was further
investigated as the cathode for LIBs. As shown infigure 4(b), the reversible capacities of the LMO-1, LMO-2 and
LMO-3 sample can be sustained at 146.3 mAh g−1, 113.4 mAh g−1 and 101.6 mAh g−1 at a current density of
0.5 C after 100 cycles, corresponding with the retention rates of 77.0%, 76.5% and 70.1%, respectively.
Figure 4(c) is the characteristic charge-discharge curves of the LMO-1 sample. The initial charge and discharge
capacities of the LMO-1 sample are about 211.9 mAh g−1 and 148.2 mAh g−1 at a current density of 0.1 C,
corresponding to the coulombic efficiency of 69.9%. As reported by Shu et al [36], the large irreversible capacity
was attributed to the phase transition from the orthorhombic LiMnO2 to spinel LiMn2O4.Moreover, a slowly
increase in the length of the plateau at 3 V and 4 Vwith further cycling has been observed, suggesting that both
the spinel-like phase and the Li+ intercalation on tetrahedral sites have developed further. The discharge
capacity of the LMO-1 sample can gradually reach themaximumvalue of 191.5 mAh g−1 at the 14th cycle, of
which the 3 Vplateau representing Li intercalation on octahedral sites becomes the longest among all discharge
cycles. The initial discharge capacity is lower than themaximumvalue at the first few cycles, which is attributed
to the enhancement of Li+ diffusivity in the host by the activation process [37]. After 50 cycles, the charge and

Figure 4. (a)The charge-discharge curves of the cycle with themaximumdischarge capacity and (b) cyclic performance of the
orthorhombic LiMnO2 samples: LMO-1, LMO-2 and LMO-3. Cyclingwas carried out at a current density of 0.5 C in the voltage
range of 2.0–4.4 V. (c)The typical charge-discharge curves and (d) cyclic performance of the LMO-1 sample. Cyclingwas carried out
at current densities of 0.1 C, 0.2 C and 0.5 C in the voltage range of 2.0–4.4 V.
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discharge capacities can bemaintained at 171.8 mAh g−1 and 162.6 mAh g−1, corresponding to the coulombic
efficiency of 94.6%. To further investigate the application of the product in high power density devices, the rate
cycling test of the LMO-1 sample was performed at current densities of 0.1 C, 0.2 C and 0.5 C in the voltage
range of 2.0–4.4 V. As displayed infigure 4(d), the initial discharge capacities of the LMO-1 sample are 148.2,
132.6 and 105.2 mAh g−1 at current densities of 0.1 C, 0.2 C and 0.5 C, respectively. Then the discharge
capacities gradually reach themaximumvalues of 191.5, 190.6 and 190.0 mAh g−1 at the 14th, 21th and 37th
cycle, respectively. After 50 cycles, the discharge capacities of the LMO-1 sample still can bemaintained at 162.6,
172.3 and 186.5 mAh g−1 at current densities of 0.1 C, 0.2 C and 0.5 C, suggesting its good cycling stability. It is
noteworthy that when the current density is 0.5 C, the LMO-1 sample shows a lower initial capacity, longer
activation time andmuch better cycling durability than that of 0.1 C and 0.2 C after 50 cycles. This can be
ascribed to the fact that the LMO-1 samplemay suffer from a ultrafast and incomplete charge-discharge process
at a high rate and some residual lithium ions in the electrodematerials have no sufficient time tofinish themore
complete intercalation and extraction process [38]. These results above reveal that the LMO-1 sample can be
regard as an excellent cathodematerial for LIBs.

4. Conclusions

In summary,mesoporous orthorhombic LiMnO2 has been successfully fabricated by a one-stepfluxmethod.
After a series of thorough tests, suchmesoporous orthorhombic LiMnO2 can deliver a initial discharge capacity
of 148.2 mAh g−1 at a current density of 0.1 C. Then the specific capacity gradually increases to amaximum
value of 191.5 mAh g−1 in thefirst few cycles, whichmay be attributed to the activation process of electrode
materials. After 50 cycles, a high specific capacity of 162.6 mAh g−1 can be still achieved. The abundant
mesoporous structure, improved specific surface area and optimal primary nanoparticle size of the
orthorhombic LiMnO2may be responsible for the superior lithium storage properties and good cycling stability.
Notably, the successful fabrication ofmesoporous orthorhombic LiMnO2 not only can offer a promising
cathodematerial for advanced LIBs, but alsowill inspire the fabrication of high performance electrodematerials
for electrochemical energy storage applications.
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