

Lattice dynamics in monolayer and few-layer SnSe₂

Wei Zhou,^{1,2,*} Zhenhai Yu,³ Hao Song,¹ Ruiyang Fang,¹ Zhangting Wu,⁴ Ling Li,¹ Zhenhua Ni,⁴

Wei Ren,⁵ Lin Wang,³ and Shuangchen Ruan^{1,†}

¹Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

²National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

³Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

⁴Department of Physics, Southeast University, Nanjing 211189, China

⁵International Centre for Quantum and Molecular Structures, Department of Physics, Materials Genome Institute and Shanghai Key

Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China

(Received 21 January 2017; published 5 July 2017)

Hexagonal tin diselenide (6Hb-SnSe₂), a two-dimensional (2D) layered metal dichalcogenide from the IVA and VIA groups, has recently drawn numerous attention in 2D nano-optoelectronics. In this paper, we investigate characteristic lattice dynamics of mechanically exfoliated mono- and few-layer 6Hb-SnSe₂ samples by Raman spectroscopy. Bulk SnSe₂ has all four Raman active modes of low-frequency shear E_g^2 and layer-breathing A_{1g}^2 modes, and high-frequency intralayer vibrational E_g^1 and A_{1g}^1 modes observed around 18.9, 33.6, 107.9, and 182.1 cm⁻¹, respectively. From polarized Raman measurements, we find that E_g^1 mode intensity is independent of polarization configuration and increases linearly with layer number, which provides an effective approach to determine sample thickness. From low-temperature Raman measurements, E_g^1 and A_{1g}^1 mode temperature coefficients of one-layer, three-layer, and bulk SnSe₂ are around -0.018 and -0.014 cm⁻¹/K, whereas they have almost zero values for low-frequency E_g^2 and A_{1g}^2 modes of bulk SnSe₂ due to different thermal responses of intralayer and interlayer vibrations. Using multiple excitation laser lines of 488, 514.5, 568, 647, and 785 nm, E_g^1 and A_{1g}^1 mode intensities of bulk SnSe₂ have a similar trend with weak maxima around 2.41 eV. Our work provides valuable information about SnSe₂ lattice vibrations for further fundamental research and potential applications in 2D devices such as thermoelectric and infrared light detectors.

DOI: 10.1103/PhysRevB.96.035401

I. INTRODUCTION

After the discovery of graphene and its novel transport properties [1-3], layered transition-metal dichalcogenides (TMDCs) have attracted tremendous interest recently due to their rich physics and wide two-dimensional (2D) device applications. Semiconductor 2H-TMDCs are typically composed of layered MX_2 structure, with M as transitional-metal elements (e.g., Mo and W) and X as chalcogenides (S, Se, and Te). Perpendicular to the covalently bonded X-M-X trilayer, the weak interlayer van der Waals (vdW) bonding enables exfoliation of TMDCs down to a monolayer. Furthermore, other layered TMDCs including ReS2 and ReSe2 possess different crystal structures of lower symmetry and strong in-plane anisotropy. Atomically thin TMDCs have novel properties such as direct band gaps in visible and near-infrared regions, relatively high carrier mobility up to $100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, and coupled spin-valley degrees of freedom. These properties lead to intense investigation of TMDCs in optoelectronics for high-efficiency solar cells, broadband photodetectors up to the infrared range, and electronics for high-performance field-effect transistors and spin valleytronics [4-8].

Different from TMDCs, hexagonal tin diselenide (6Hb-SnSe₂) has metal Sn atoms replacing the transitionalmetal W and Mo atoms, making it a similar but quite different semiconductor with unique thermal, electronic, and optical properties. The group-IV element Sn has outer p electrons rather than d electrons of Mo involved in the structural bonding, leading to the indirect semiconductor nature of SnSe₂ with a smaller band gap around 1 eV and weak photoluminescence which is hardly observable [9]. As a promising 2D material, SnSe₂ has been recently investigated as a thermoelectric material comparable to Bi₂Te₃ and Bi₂Se₃ [10,11], field-effect transistors [12–14], tunneling field-effect transistors [15], phase change memory material [16,17], and high-performance fast photodetectors [18,19] as reviewed in [20]. Furthermore, SnSe₂ has added new functions into vdW heterostructures such as Esaki diodes by introducing the type-III broken gap band alignment between SnSe₂ and black phosphorus [21].

With increasing interest in SnSe₂ in optoelectronics, theoretical [22] and experimental investigation of its layerdependent optical, vibrational, and thermal properties are few. In recent Raman investigation of SnSe₂ nanosheets and bulk samples, temperature and pressure coefficients of the out-ofplane A_{1g}^1 mode were obtained [23,24]. However, the characteristic in-plane E_g^1 mode was absent. Furthermore, there was no similar phase transition of MoS₂ observed under hydrostatic pressure. We attribute these discrepancies to sample quality and the relative weak E_g^1 mode. Mechanically exfoliated SnSe₂ flakes are high-quality single crystals; the important in-plane vibration information can be easier to access.

In this work, we report a systematical investigation of lattice vibrations of mechanically exfoliated mono- to few-layer SnSe₂ samples by Raman spectroscopy. For bulk SnSe₂, we observe all four characteristic Raman modes, E_g^2 , A_{1g}^2 , E_g^1 , and A_{1g}^1 , around 18.9, 33.6, 107.9, and 182.1 cm⁻¹.

^{*}wzhou@szu.edu.cn

[†]scruan@szu.edu.cn

Polarized Raman measurements show two in-plane E modes are polarization insensitive, and the linear thickness dependence of E_g^1 mode intensity is useful to determine the SnSe₂ layer number. We further investigate one-layer, three-layer, and bulk SnSe₂ lattice vibrations at a temperature range of 77–300 K. Temperature coefficients of SnSe₂ E_g^1 and A_{1g}^1 modes are around -0.018 and $-0.014 \text{ cm}^{-1}/\text{K}$, similar to those of MoS₂. However, low-frequency E_g^2 and A_{1g}^2 Raman shifts and full width at half maximum (FWHM) have almost no temperature dependence. Finally, to check electronic states involved in phonon scattering, we perform Raman measurements of bulk SnSe₂ using multiple incident lasers; E_g^1 and A_{1g}^1 modes are both nondispersive, with the same intensity resonances for a 2.41-eV laser, which can be from interband transitions.

II. EXPERIMENT

One- to three-layer (1-3L) 6Hb-SnSe₂ samples are obtained by mechanical exfoliation of bulk single-crystal SnSe₂ (2D semiconductors) onto Si substrates of 300-nm SiO₂. SnSe₂ flakes are first identified under a Zeiss optical microscope; then an atomic force microscope (AFM, Bruker) using the ScanAsyst mode is used to measure sample thickness. Raman measurements are conducted on a Horiba-JY T64000 system using backscattering geometry; the incident laser wavelength is 514.5 nm with spot size about 2 μ m in diameter. Laser power is kept as low as 0.1 mW to minimize the heating damage. For low-frequency polarized Raman experiments, the Horiba lowfrequency Raman suite is used. The incident laser polarization direction is parallel to the polarizer initially; then we use a half wave plate to rotate the incident laser polarization by 10° for every spectrum. For low-temperature Raman experiments, a Linkam stage lowers the temperature from 300 to 77 K before measurements, and a vacuum pump keeps sample surfaces clean from ice. We use multiple linear laser lines of 488, 514, 568, 647, and 785 nm to investigate E_g^1 and A_{1g}^1 modes of bulk SnSe₂. To avoid the influence from laser polarization, all five incident lasers are polarized in the same [010] direction and focused on the same sample spot [25]. Raman shifts and FWHM are obtained by the Lorentzian fitting procedure.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the optical image of one exfoliated $SnSe_2$ flake on the SiO₂/Si substrate; the thicknesses of different parts are measured by AFM with the corresponding height profiles in Fig. 1(b). The ideal height value of monolayer $SnSe_2$ is 0.62 nm [26]. At ambient conditions, a larger value of 1.2 nm is reasonable for monolayer $SnSe_2$ due to possible influences from environments such as substrate smoothness, absorbed molecules, and AFM measurement errors. Recently, a close height value of 0.87 nm has been obtained for monolayer $SnSe_2$ [19] and 1.0 nm for SnS_2 monolayer [27].

Composed of three Se-Sn-Se trilayer repeats, 6Hb-SnSe₂ has its symmetry characterized by the space group $D_{3d}^3(P\bar{3}m1)$, whose 27 normal modes contain Raman active modes $4A_{1g}$ and $4E_g$ [28]. In Fig. 1(c), we present Raman spectra of few-layer SnSe₂ samples above 100 cm⁻¹; in-plane E_g^1 and out-of-plane A_{1g}^1 modes are both obtained around 108.1

FIG. 1. (a) The optical image of one SnSe₂ flake with 1L, 2L, and 3L parts. (b) AFM height profiles of 1L (black), 2L (red), and 3L (blue) SnSe₂ along white line directions of the inserted AFM image. (c) Raman spectra of 1–4L and bulk SnSe₂; the vertical dashed lines are a guide for the eyes. (d) SnSe₂ E_g^1 mode intensity with respect to layer number.

and 185.2 cm^{-1} , similar to previous reports [28,29]. Due to weak intensities of E_g^1 and A_{1g}^1 modes of 1–2L SnSe₂ samples, we observe no clear thickness dependence of Raman frequency within the experimental error bar, similar to the "monolayer" behavior of ReS₂ [30]. Compared with few-layer SnSe₂, bulk SnSe₂ the E_g^1 mode has almost no shift and the A_{1g}^1 mode

FIG. 2. (a) Low-frequency Raman spectra of NL SnSe₂ for selected rotated laser polarization angles θ from the initial parallel polarized configuration. (b) Normalized E_g^2 (black squares), A_{1g}^2 (red circles), E_g^1 (blue upward triangles), and A_{1g}^1 (magenta downward triangles) mode intensities of NL SnSe₂ with respect to angle θ . (c) Raman spectra of 3L SnSe₂ for selected angle θ .

FIG. 3. (a–c) 1L, 3L, and bulk $SnSe_2$ Raman spectra of selected temperatures from 77 to 300 K; the vertical dotted line in (a) is a guide for the eye. Spectra are shifted vertically for clarity.

saturates around 184.1 cm^{-1} , indicating the A_{1g}^1 mode frequency redshifts with respect to increasing layer number. This behavior is also quite different from that of MoS₂, where E_{2g}^1 and A_{1g} modes redshift and blueshift, respectively with increasing layer number. The Raman frequency trend of 2H-TMDCs such as MoS₂ [31] and MoTe₂ [32] can be ascribed to surface effects and inter- and intralayer couplings. Whereas 1T'-TMDCs including ReS₂ and ReSe₂ have comparable interlayer couplings with 2H-TMDCs, their layer-breathing and shear modes have different frequency trends and can be rationalized by symmetry arguments [33]. SnSe₂ Raman mode frequency shift trends are different from those of 2H-TMDC MoS₂; the underlying mechanism including thickness and surface effects deserves further experimental and theoretical investigation.

As shown in Fig. 1(d), E_g^1 mode intensity of SnSe₂ increases almost linearly for 1-4L samples; showing the increased sample amount effect, similar behavior has been used to determine SnSe₂ and SnS₂ sample thickness recently [19,27]. For thicker samples, we observed E_{g}^{1} mode intensity is not necessarily increased and can be even weaker than few-layer samples due to the interference effect. From experimental and theoretical simulation of MoS_2 interference effect [34], Raman mode intensity increases with sample thickness until reaching a critical thickness depending on optical environments such as substrates and lasers. To explore 2D effects, 1L to few-layer samples can be determined empirically using this linear relation. Considering measured Raman mode intensity depends on many factors including laser power, focusing, integration time, etc., Raman spectroscopy provides a proper method to determine the relative rather than absolute sample thickness. Furthermore, lasers used in Raman experiments are generally linearly polarized, whereas SnSe₂ Raman modes and the Si characteristic Raman mode around 520.7 cm⁻¹ can be polarization sensitive. To use intensity ratios of E_g^1 and A_{1g}^1 modes over Si 520.7 cm⁻¹ mode as a proper approach to determine SnSe₂ sample thickness, the polarization configuration should be specified and fixed during measurements, and the Raman mode symmetry should be understood.

We then check the symmetry of Raman modes by lowfrequency polarized Raman experiments down to 15 cm^{-1} . At ambient conditions, the linear 514.5-nm laser of 0.1 mW

FIG. 4. Raman shifts of (a) A_{1g}^1 and (b) E_g^1 modes with respect to temperature for 1L (black squares), 3L (red circles), and bulk (blue triangles) SnSe₂ samples. The three solid lines are linear fittings of data. The corresponding FWHM of A_{1g}^1 and E_g^1 modes are presented in (c,d), respectively, where three lines connecting data points are a guide for the eye.

is focused on the 2D plane of bulk SnSe₂. Selected Raman spectra of the bulk $SnSe_2$ sample are shown in Fig. 2(a). Symmetric Stokes and anti-Stokes modes can be identified as E_g^2 (18.9 cm⁻¹), A_{1g}^2 (33.6 cm⁻¹), E_g^1 (107.9 cm⁻¹), and A_{1g}^1 (182.1 cm^{-1}) , respectively [28,29], where low-frequency shear E_g^2 and breathing A_{1g}^2 modes (in-plane and out-of-plane interlayer relative motions) can hardly be resolved for few-layer samples. We define θ as the rotated angle of the incident laser polarization from the initial parallel polarized configuration. For a clear view, we normalize four mode intensities by their maxima and plot the obtained values with respect to angle θ in Fig. 2(b). Two *E* mode intensities are polarization insensitive whereas two A_{1g} modes have intensity oscillations of period π , showing the same symmetries of in-plane E and out-of-plane A_{1g} modes of MoS₂ [29,35–37]. Polarized Raman experiments indicate that E_g^1 mode intensities rather than those of A_{1g}^1 modes are more suitable for SnSe2 thickness determination. The same E_g^1 and A_{1g}^1 mode intensity behaviors are obtained for one 3L SnSe₂ sample in Fig. 2(c). We then perform polarized Raman measurements using the 3L SnSe₂ sample without analyzer; the E_g^1 mode intensity is still polarization insensitive, but the A_{1g}^{\downarrow} mode has an irregular intensity fluctuation with respect to θ , which further supports that the intensity of E_{a}^{1} mode above $100 \,\mathrm{cm}^{-1}$ provides a convenient approach for thickness determination of SnSe₂ on SiO₂/Si.

Temperature-dependent lattice vibrations of SnSe₂ are important for thermal property research such as thermal

conductivity, and 2D nano-optoelectronics performance. In Fig. 3, we present Raman spectra of 1L, 3L, and bulk SnSe₂ at a temperature range from 77 to 300 K. With decreasing temperature, E_g^1 and A_{1g}^1 modes of all samples blueshift with sharpened profiles, showing the general thermal effect of semiconductors. Within experimental error bars, the E_g^1 and A_{1a}^1 mode positions of three samples have a similar linear temperature dependence as shown in Figs. 4(a) and 4(b). From 77 to 300 K, the linear fitting procedure to obtain temperature coefficients has been widely used for 2D materials including SnSe₂ nanosheets as well as mono- to few-layer MoS₂ samples [38,39]. The linear dependence of Raman shift with temperature is described by the formula $f(T) = f_0 + \chi T$, where f(T) and f_0 are Raman frequencies at temperature T and 0 K. Temperature coefficients χ of 1L, 3L, and bulk samples are -0.0171, -0.0188, and $-0.018 \text{ cm}^{-1}/\text{K}$ for E_g^1 mode and -0.0138, -0.0137, and $-0.0146 \text{ cm}^{-1}/\text{K}$ for A_{1e}^1 mode, respectively. χ values of A_{1g}^1 mode are close to those of SnSe₂ nanosheets of $-0.0129 \text{ cm}^{-1}/\text{K}$ [24] and $-0.016 \text{ cm}^{-1}/\text{K}$ [40], comparable to those of mono- and few-layer MoS_2 as -0.016 and $-0.011 \text{ cm}^{-1}/\text{K}$ [38,39]. χ values of E_g^1 mode are also close to those of A_{1g}^1 modes, similar to those of MoS₂. One recent χ value of the SnSe₂ E_g^1 mode is $-0.006 \,\mathrm{cm}^{-1}/\mathrm{K}$, where few-layer nanosheet samples were fabricated by the one-step solvothermal route [40]. Mechanical exfoliated single crystals used in our measurements could be the reason for this

FIG. 5. (a) Raman shifts and (b) FWHM of low-frequency E_g^2 (vacant squares) and A_{1g}^2 (filled circles) modes with respect to temperature for bulk SnSe₂. Solid lines are linear fittings of data. (c) Raman spectra of bulk SnSe₂ using excitation laser lines of 488, 514.5, 568, 647, and 785 nm. (d) Laser power normalized intensities of A_{1g}^1 and E_g^1 modes with respect to excitation laser energy. Lines connecting data points are a guide for the eye.

difference. In Figs. 4(c) and 4(d), full width at half maximum (FWHM) of three SnSe₂ samples all decrease with decreasing temperature almost linearly with slopes surprisingly smaller than those of peak positions. However, FWHM values of 1L SnSe₂ are larger than those of 3L and bulk samples for both E_g^1 and A_{1g}^1 modes, indicating a phonon scattering effect from the substrate, similar to few-layer black phosphorus [41]. For 3L and bulk SnSe₂ samples, FWHM of E_g^1 and A_{1g}^1 modes are both smaller than those of nanosheets [40], which shows the high quality of the mechanically exfoliated single crystal samples.

In Figs. 5(a) and 5(b), we present bulk SnSe₂ low-frequency E_g^2 and A_{1g}^2 mode shifts and FWHM with respect to temperature. The linear fitting gives temperature coefficients almost zero values (one to two orders smaller than those of E_g^1 and A_{1g}^1 modes), and the corresponding FWHM of no clear temperature trend, consistent with one previous observation [28]. Also different from the E_g^1 and A_{1g}^1 modes, the E_g^2 mode becomes stronger with increasing temperature, which indicates in-plane rigid-layer vibrations increase with temperature, similar to the E_g^2 mode behavior of MoS₂ [42]. A_{1g}^1 mode intensity is almost invariant, showing out-of-plane interlayer vibrations are quite insensitive to temperature. The different thermal behavior of interlayer and intralayer lattice vibrations can be useful in designing 2D devices.

Finally, we perform Raman measurements of bulk SnSe2 using multiple excitation lasers (488, 514, 568, 647, and 785 nm) at room temperature. The indirect band gap of bulk SnSe₂ is around 1.0 eV, generally not accessible by lasers used in Raman experiments. In Fig. 5(c), Raman spectra above $50 \,\mathrm{cm}^{-1}$ are presented: E_g^1 and A_{1g}^1 modes are both nondispersive; their intensities are normalized by the incident laser power and plotted with respect to laser energy in Fig. 5(d). The normalized mode intensities have similar behavior and reach weak maxima at 2.41 eV, which could be from interband transitions. Different from resonant Raman scattering of TMDCs (including few-layer to bulk TMDCs of indirect band gaps) [43–47], where laser energies larger than band gaps lead to mode intensity resonances as well as second-order combination or overtone Raman modes, SnSe₂ has no clear resonant Raman modes and excitons (using a 488-nm laser) observed. Recently, to understand Raman intensity with respect to incident laser energy for 1L and 3L MoTe₂, first-principles calculations have shown quantum interference and electron-phonon coupling contributions from different electronic transitions of the Brillouin zone can be constructive or destructive, and excitonic effects are also important to explain the Raman mode intensity ratios [48]. The relation between lattice vibrations and electronic and excitonic states of SnSe₂ thus deserves more work because of its fundamental importance.

IV. CONCLUSION

In conclusion, we have exfoliated mono- to few-layer 6Hb-SnSe₂ samples and investigated their lattice dynamics by low-wave-number, polarized, low-temperature, and varying wavelength Raman experiments. We obtain Raman active shear mode E_g^2 , breathing mode A_{1g}^2 , and intralayer E_g^1 and A_{1g}^1 modes of bulk SnSe₂ about 18.9, 33.6, 107.9, and 182.1 cm⁻¹ at 300 K. SnSe₂ in-plane E_g^1 mode intensity is insensitive to incident laser polarization and increases almost linearly with layer number, providing a convenient approach for layer number determination. E_g^1 and A_{1g}^1 mode frequency separation has no clear thickness dependence like MoS₂, indicating a different type of interlayer coupling of SnSe₂. We obtain temperature coefficients of E_g^1 and A_{1g}^1 modes about -0.018 and $-0.014 \text{ cm}^{-1}/\text{K}$, comparable to those of MoS₂; for E_g^2 and A_{1g}^2 modes, Raman shifts and FWHM are both insensitive to temperature due to their interlayer nature. Multiple wavelength Raman measurements show E_{q}^{1} and A_{1q}^{1} modes have only weak intensity maxima for a 2.41-eV laser. Our investigation of SnSe2 provides useful information for not only fundamental research, but also potential applications in the emerging thermal and optoelectronic 2D devices of atomic thickness.

ACKNOWLEDGMENTS

W.Z. acknowledges facility use from Prof. Miao Feng of the Physics Department of Nanjing University. This work was supported by the National Natural Science Foundation of China (61575129), NSAF (Grant No. U1530402) and the Shenzhen Science and Technology Project (JCYJ20140418091413577). L.W. acknowledges the Program for New Century Excellent Talents in University (NCET-10-0444) and the "Science Challenging Program."

W.Z. and Z.Y. contributed equally to this work.

- K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).
- [2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
- [3] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
- [4] Y. Liu, O. N. Weiss, X. D. Duan, H. C. Cheng, Y. Huang, and X. F. Duan, Nat. Rev. Mater. 1, 16042 (2016).
- [5] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
- [6] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).

- [7] H. Zhang, ACS Nano 9, 9451 (2015).
- [8] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768 (2013).
- [9] C. Julien, M. Eddrief, I. Samaras, and M. Balkanski, Mater. Sci. Eng., B 15, 70 (1992).
- [10] B. Z. Sun, Z. Ma, C. He, and K. Wu, Phys. Chem. Chem. Phys. 17, 29844 (2015).
- [11] A. A. Kozma, Y. M. Sabov, Y. E. Peresh, E. I. Barchiy, and V. V. Tsygyka, Inorg. Mater. 51, 93 (2015).
- [12] Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, Appl. Phys. Lett. 103, 263104 (2013).

- [13] T. Pei, L. Bao, G. Wang, R. Ma, H. Yang, J. Li, C. Gu, S. Pantelides, S. Du, and H. J. Gao, Appl. Phys. Lett. 108, 053506 (2016).
- [14] C. Guo, Z. Tian, Y. Xiao, Q. Mi, and J. Xue, Appl. Phys. Lett. 109, 203104 (2016).
- [15] T. Roy, M. Tosun, M. Hettick, G. H. Ahn, C. Hu, and A. Javey, Appl. Phys. Lett. **108**, 083111 (2016).
- [16] R. Y. Wang, M. A. Caldwell, R. G. D. Jeyasignh, S. Aloni, R. M. Shelby, H. S. P. Wong, and D. J. Milliron, J. Appl. Phys. 109, 113506 (2011).
- [17] K. M. Chung, D. Wamwangi, M. Woda, M. Wuttig, and W. Bensch, J. Appl. Phys. **103**, 083523 (2008).
- [18] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Adv. Mater. 27, 8035 (2015).
- [19] P. Yu, X. Yu, W. Lu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q. Wang, and Z. Liu, Adv. Funct. Mater. 26, 137 (2016).
- [20] X. Zhou, Q. Zhang, L. Gan, J. Xiong, and T. Zhai, Adv. Sci. 3, 1600177 (2016).
- [21] R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, and H. G. Xing, Nano Lett. 15, 5791 (2015).
- [22] J. M. Gonzalez and I. I. Oleynik, Phys. Rev. B 94, 125443 (2016).
- [23] S. V. Bhatt, M. P. Deshpande, V. Sathe, and S. H. Chaki, Solid State Commun. 201, 54 (2015).
- [24] A. Taube, A. Łapińska, J. Judek, and M. Zdrojek, Appl. Phys. Lett. 107, 013105 (2015).
- [25] J. B. Renucci, R. N. Tyte, and M. Cardona, Phys. Rev. B 11, 3885 (1975).
- [26] R. Schlaf, N. R. Armstrong, B. A. Parkinson, C. Pettenkofer, and W. Jaegermann, Surf. Sci. 385, 1 (1997).
- [27] Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, ACS Nano 8, 10743 (2014).
- [28] A. J. Smith, P. E. Meek, and W. Y. Liang, J. Phys. C: Solid State Phys. 10, 1321 (1977).
- [29] X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, Nanoscale 8, 6435 (2016).
- [30] S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Y. Yan, D. F. Ogletree, S. Aloni, J. Ji.,

S. S. Li, J. B. Li, F. M. Peeters, and J. Q. Wu, Nat. Commun. 5, 3252 (2014).

- [31] X. Luo, Y. Zhao, J. Zhang, Q. Xiong, and S. Y. Quek, Phys. Rev. B 88, 075320 (2013).
- [32] G. Froehlicher, E. Lorchat, F. Fernique, C. Joshi, A. Molina-Sánchez, L. Wirtz, and S. Berciaud, Nano Lett. 15, 6481 (2015).
- [33] E. Lorchat, G. Froehlicher, and S.Berciaud, ACS Nano 10, 2752 (2016).
- [34] S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, ACS Nano 6, 7381 (2012).
- [35] Y. Wang, C. Cong, C. Qiu, and T. Yu, Small 9, 2857 (2013).
- [36] X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, Phys. Rev. B 87, 115413 (2013).
- [37] X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, Chem. Soc. Rev. 44, 2757 (2015).
- [38] N. A. Lanzillo, A. G. Birdwell, M. Amani, F. J. Crowne, P. B. Shah, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, M. Dubey, S. K. Nayak, and T. P. O'Regan, Appl. Phys. Lett. 103, 093102 (2013).
- [39] M. Thripuranthaka, R. V. Kashid, C. S. Rout, and D. J. Late, Appl. Phys. Lett. **104**, 081911 (2014).
- [40] A. S. Pawbake, S. R. Jadkar, and D. J. Late, ChemistrySelect 1, 5380 (2016).
- [41] L Q. Su and Z. Yong, Appl. Phys. Lett. 107, 071905 (2015).
- [42] S. Sahoo, A. P. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, J. Phys. Chem. C 117, 9042 (2013).
- [43] B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, Phys. Rev. Lett. 114, 136403 (2015).
- [44] P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, Phys. Rev. B 93, 155407 (2016).
- [45] E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. A. Nguyen, T. E. Mallouk, M. Terrones, and M. A. Pimenta, ACS Nano 8, 9629 (2014).
- [46] R. Saito, A. R. Nugraha, E. H. Hasdeo, S. Siregar, H. Guo, and T. Yang, Phys. Status Solidi B 252, 2363 (2015).
- [47] Q. J. Song, Q. H. Tan, X. Zhang, J. B. Wu, B. W. Sheng, Y. Wan, X. Q. Wang, L. Dai, and P. H. Tan. Phys. Rev. B 93, 115409 (2016).
- [48] H. P. Miranda, S. Reichardt, G. Froehlicher, A. Molina-Sánchez, S. Berciaud, and L. Wirtz, Nano Lett. 17, 2381 (2017).