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Significant improvement in Mn2O3 
transition metal oxide electrical 
conductivity via high pressure
Fang Hong1,2, Binbin Yue1,2, Naohisa Hirao3, Zhenxian Liu4 & Bin Chen1

Highly efficient energy storage is in high demand for next-generation clean energy applications. As 
a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical 
conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 
significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity 
measurement revealed that resistivity decreased with pressure and dramatically dropped near the 
phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample 
showed metal-like behavior. More importantly, resistivity remained much lower than its original value, 
even when the pressure was fully released. This work provides a new method to enhance the electronic 
properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields.

Transition metal oxides have unique properties that are capable of developing new, functional and smart mate-
rials. In particular, manganese oxide has been a key focus due to its outstanding structural diversity and novel 
physicochemical properties1–4. It also has the advantage of being earth abundant, non-toxic and cost effective, 
attracting enormous attention for a wide variety of energy and environmental applications, such as chemical cat-
alysts, magnetic devices, and energy conversion and storage5–10. Mn2O3 is a semiconductor but it can be employed 
as a high-performance anode material in Lithium-ion batteries (LIBs), with a high theoretical capacity of 1018 
mAh/g at a low operating voltage (charge voltage at 1.2 V and discharge voltage at 0.5 V)11. Furthermore, its one 
electron transfer caused by electrochemical redox activity via the Mn3+ to Mn4+ transition is significant for its 
electrode reactions in electrochemical capacitors.

Electrode materials for batteries and supercapacitors must have good electrical conductivity to achieve high 
electrochemical performance12,13. Poor electrical conductivity may limit the solid-state diffusion rate of the elec-
trons and/or ions, consequently resulting in reduced power and energy density. In this regard, the poor electrical 
conductivity of Mn2O3 is a major drawback. Traditionally, the electrical conductivity of transition metal oxides 
can be enhanced by forming nanocomposite materials with highly conductive carbon or graphene. Alternatively, 
cationic doping achieves a similar effect14,15. In addition, various nanostructures like nanorods, nanospheres, and 
mesoporous Mn2O3 have been prepared and demonstrate a clear improvement in the specific capacitance16–18. 
These methods have undoubtedly boosted the development of transition metal oxide-based energy storage. 
However, sometimes these methods have additional problems, such as low thermal stability and an increased 
manufacturing cost. Therefore, improving the intrinsic electrical conductivity of transition metal oxides for 
high-performance energy storage is imperative. Recent works have shown pressured-induced electron trans-
port enhancement of Nb-doped TiO2 nanoparticles and single-crystal Ta2O5 nanowires19,20 and there are further 
reports of pressure-induced superconductivities21,22. Therefore, pressure may be a powerful tool to modify the 
electrical conductivity of transition metal oxides.

Here, we tentatively studied the electrical properties of the promising transition metal oxide, Mn2O3, using 
high-pressure to reveal the relationship between its electrical properties and structure. First, we investigated the 
electrical properties in situ inside a diamond anvil cell by resistance measurements at room temperature and pres-
sures up to 43 GPa. The electrical conductivity enhanced by five orders of magnitude at the highest pressure. More 
importantly, conductivity after high-pressure treatment was more than ten times higher than the original level 
before treatment at ambient conditions. To reveal the mechanism of this enhancement behavior, we examined the 
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structural evolution of Mn2O3 under high pressure using in situ synchrotron x-ray diffraction (XRD) and Raman 
spectroscopy at room temperature; a phase transition began around 18.5 GPa and 15 GPa, respectively. We also 
examined the electronic structure by infrared spectroscopy and proved that Mn2O3 behaves like a metal rather 
than a semiconductor under high pressure. This work provides an efficient way to improve the electrical conduc-
tivity of manganese oxides, benefiting their applications as electrode materials for high-performance batteries 
and supercapacitors.

Results and Discussion
The electrical measurement of Mn2O3 under high pressure. Figure 1 displays the pressure depend-
ent electrical resistivity of Mn2O3 during both compression and decompression. During compression, resistivity 
shows a clear decreasing trend with increasing pressure and a huge resistivity drop occurs. At the highest pres-
sure of ~43 GPa, the resistivity is only on the scale of ~10−2 Ohms*m compared to ~103 Ohms*m near ambient 
conditions. A sharp resistivity change from ~15 GPa to ~25 GPa indicates an electronic transition. In addition, a 
minor kink near 5 GPa may also suggest an electronic transition. This transition is much clearer when the resis-
tivity-pressure curve is plotted on a linear scale, as shown in Figure S1 in the Supplementary information. During 
decompression, the pressure dependent resistivity trend is the opposite. It increases with pressure release and a 
kink appears near 5 GPa, which may be related to an inverse electronic transition. When pressure is fully released, 
resistivity remains one order of magnitude lower than it was before compression.

Interestingly, the relationship between resistivity and pressure can be well described by a logarithmic function 
for each phase. To exclude the grain boundary effect and mixed phases, we only fitted the decompression data 
with logarithmic functions. The fitting details are provided in Figure S2 in the Supplementary information. The 
pressure dependent resistivity can be expressed by the following relationship:

For the high-pressure range:

ρ = . .‑ln 3 38 0 17P (1)

For the low-pressure range:

ρ = . .‑ln 5 16 0 29P (2)

where ρ  is the resistivity and P is the pressure. Similar logarithmic behavior of pressure dependent resistivity has 
also been found in VO2, MoSe2, and GeSb2Te4

23–25.

The crystal structure investigated by synchrotron x-ray diffraction and Raman spectroscopy 
under high pressure. To understand the mechanism of the enhanced electrical conductivity, we examined 
the Mn2O3 structural evolution under high pressure. Figure 2 demonstrates the X-ray diffraction patterns at var-
ious pressures during compression. At low pressure, the structure of Mn2O3 can be well assigned to a cubic phase 
with the Ia-3 space group26. New diffraction peaks appear clearly from 18.5 GPa, suggesting that a phase transition 
has already occurred. The new phase mixes with the cubic phase from 18.5 GPa to 26.5 GPa before the cubic phase 
is completely suppressed above 26.5 GPa. This high-pressure phase can be assigned to an orthorhombic struc-
ture with the space group Cmcm26. Figure 2(b,c) shows representative refinement patterns of Mn2O3 collected at 
34.4 GPa and 1.6 GPa, corresponding to the high-pressure orthorhombic phase and the low-pressure cubic phase, 
respectively. The refinement merit is indicated by the Rwp values, which are quite small at only 1.75% and 2.04%. 
The structural details of these two pressure points are listed in Table S1 in the Supplementary information.

The pressure dependent structural information is presented in Fig. 3. Figure 3(a) displays the pressure dependent 
lattice parameters. For the cubic phase, the lattice parameter decreases monotonously with pressure. For the orthor-
hombic phase, the a axis shows a clear declining trend with pressure, while the c axis shows little change and the 
b axis decreases slowly above the final phase transition pressure of 26.5 GPa. Figure 3(b) demonstrates the volume 

Figure 1. The pressure dependent resistivity of Mn2O3 during compression and decompression. Insert: the 
scheme of electrical measurements in the diamond anvil cell.
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evolution with pressure; the large change in the atomic structure causes a significant volume change near the phase 
transition pressure. The unit volume of the orthorhombic structure at 18.5 GPa is only ~87.5% of the cubic structure. 
In the high-pressure orthorhombic structure, oxygen atoms in the ab-plane show a highly ordered arrangement and 
the MnO6 units are less distorted compared to those in the cubic structure, as demonstrated by the insets in Fig. 3(b). 
Large pressure-induced volume changes in transition metal compounds are usually related to an electronic struc-
tural change of the transition metal ions (such as Fe, Co, and Mn), which can undergo a spin state transition from a 
high/intermediate spin state to a low spin state27–29. The spin state transition of MnS2 has a volume collapse as large 
as 22% from the low-pressure cubic structure to a high-pressure monoclinic structure near 18 GPa. Recently, a spin 
state transition was also observed in MnS and MnSe with a large volume collapse30. Here, the large volume collapse 
in our Mn2O3 may originate from a spin state transition too but further study is required to clarify this assumption.

Figure 2. The X-ray diffraction results of Mn2O3 up to ~44 GPa (wavelength is 0.4141 Å) during 
compression. (a) Two-dimensional X-ray diffraction patterns. (b,c) The representative refinement patterns 
at 34.4 GPa and 1.6 Gpa, respectively. A structural phase transition is observed near 18 GPa and finishes near 
26.5 GPa. The refinement merit is indicated by the Rwp values, which are very small.

Figure 3. Refinement results of Mn2O3 structural information during compression. (a) The pressure 
dependent lattice parameters. (b) Volume evolution under high pressure (inset: atomic structures of cubic 
and orthorhombic phases). There is a large volume collapse at the phase transition pressure. At ~18.5 GPa, the 
volume difference of the two phases reaches ~12%.
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We also investigated the Mn2O3 structural evolution by Raman spectroscopy during compression. The results 
are provided in Figure S3 in the Supplementary information. A structural phase transition occurred near 15 GPa, 
indicated by two new, strong vibration modes (~550 and ~650 cm−1 at 20 GPa). Two extra modes located at ~150 
and ~200 cm−1 became more pronounced when the pressure reached ~18 GPa, suggesting an overall phase tran-
sition occurred. This is well consistent with the XRD results and no further change was observed in the current 
pressure limit. The Raman spectra results confirmed that the structural phase transition started ~15 GPa, a little 
bit lower than the XRD result determination. The phase transition also matched the resistivity measurement.

We studied the compressibility of the Mn2O3 low-pressure (cubic) and high-pressure (orthorhombic) struc-
tures using second-order Birch-Murnaghan equation of state (EOS) analysis31,32. The fitting results are presented in 
Figure S4 in the Supplementary information. For the cubic phase, V0 is 34.43 cm3/mol and the bulk modulus B0 is 
286.4 ±  16.6 GPa, using a fixed first-order pressure derivative of the bulk modulus B′ =  4. For the orthorhombic phase, 
V0 is 27.5 cm3/mol and the bulk modulus B0 is 331.09 ±  28.3 GPa, using a fixed first-order pressure derivative of the 
bulk modulus B′ =  4. Hence, the high-pressure phase is a little more difficult to compress than the low-pressure phase.

To reveal the mechanism of the different electrical resistivity behavior under compression and decompres-
sion, XRD and Raman spectra were also collected during decompression, as shown in Fig. 4(a and b), respec-
tively. No phase transition occurred when the pressure was released to 8.6 GPa, as confirmed by our XRD results. 
However, a clear difference was visible near 6.0 GPa, where an extra diffraction peak appeared. Subsequently, 
the low-pressure phase dominated and we assigned this phase to the previous cubic phase, though the peaks 
broadened and the intensity of some peaks was lower, compared with those during compression. The broadening 
and intensity changes were due mainly to the reduced crystal size and disorders induced by pressure. The Raman 
spectra gave similar results. No clear change presented until pressure reduced to 5.3 GPa. After that, the intensity 
of the Raman signal almost disappeared and no peaks were identified. This was consistent with the cubic phase, 
where the Raman signal was much weaker than in the orthorhombic phase. The disorders and smaller crystal size 
also affect the Raman signal in the low-pressure range, which made the weak Raman signal much more difficult 
to collect. These results match well with previous reports of high-pressure phase stability until 4.5 GPa during 
decompression33,34. More importantly, the structural change during decompression and the resistance measure-
ment results are also consistent, as displayed in Fig. 1. Hence, the electronic transition near 5 GPa originates 
from a reversible structural phase transition. Similar results have been reported on other materials20. The micro-
structural change after high-pressure treatment should be responsible for the enhanced conductivity behavior. 
Pressure can drive lattice distortion and even slip35,36, during which defects appear, breaking the original locally 
neutral charge distribution and aiding electron transfer.

Infrared spectroscopy study on Mn2O3 under high pressure. The electronic behavior of Mn2O3 
under high pressure was investigated by synchrotron-based infrared spectroscopy (IR) to reveal the electronic 
structural change. Figure 5 presents the reflectivity spectra at some typical pressures. As the sample we used in 
the IR measurement was a fine powder, the reflectivity signal was noisy and relatively low due to strong scattering 
on the coarse surface. However, we still observed a clear trend under high pressure, which helps us understand its 
electronic behavior. An average dot plot for each spectrum guides the eyes. We expected the spectrum at 2.0 GPa 
to be similar to that at ambient conditions. It shows typical reflective behavior from a semiconductor or insulator, 

Figure 4. Structural investigation during decompression. (a) Pressure dependent X-ray diffraction patterns. 
(b) Pressure dependent Raman spectra. Pressure unit: GPa.
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where reflectance is lower in a low wave number (low-energy) region than in a high wave number (high-energy) 
region. No obvious change occurred when the pressure increased a little from 2.0 GPa to 3.7 GPa (shown in 
Figure S5(a) in the Supplementary information). The trend suddenly changed at 5.7 GPa, which is characteristic 
of metal-like behavior as reflectance is higher in the low wave number region than in the high wave number 
region. This is also consistent with the resistance measurement result during compression in Fig. 1, where a kink 
occurs near 5 GPa. This change suggests that a previously unreported electronic phase transition occurred near 
5 GPa. Above 5.7 GPa, the reflectance slightly increased with pressure in the long wavenumber range (shown in 
Supplementary information Figure S5(b)), suggesting better conductivity and metal-like behavior. This trend 
changed when the pressure reached 17.1 GPa, near the structural phase transition. The reflectance decreased at 
17.1 GPa to even lower than at 5.7 GPa. Another change occurred between 23.5 GPa and 26.7 GPa where reflec-
tance strengthened due to the completion of the structural phase transition. Figure 5 shows stronger reflection at 
32.5 GPa or higher pressure, and this trend follows a metal-like behavior. To briefly summarize the observed elec-
tronic behavior; the sample underwent an electronic phase transition near 5.7 GPa with no structural change and 
a structural phase transition induced electronic structure change near 17.1 GPa. The phase transition concluded 
between 23.5 and 26.7 GPa. These IR results agree with the resistance measurements and structural analysis.

Conclusion
In summary, we systematically investigated the electronic and structural properties of Mn2O3 under high pres-
sure using resistivity measurements, X-ray diffraction, Raman spectroscopy, and infrared spectroscopy. A 
cubic-orthorhombic phase transition began near 15.1 GPa. The resistivity dropped sharply near this transition 
and the sample showed some metal-like features at higher pressure. Clearly, high pressure strongly enhanced 
electrical conductivity. The quenched sample maintained better electrical conductivity than its original value. 
Our work helps solve the problem of poor Mn2O3 electrical conductivity without the addition of another element, 
allowing wider applications in the energy storage field.

Methods
High-pressure XRD, Raman, and IR study at room temperature. The α -Mn2O3 (99.99% trace met-
als basis) was purchased from Sigma-Aldrich. In situ Raman spectra and X-ray diffraction patterns under various 
pressures were collected from the α -Mn2O3 sample, which was loaded into a Mao-type symmetric diamond anvil 
cell (DAC) with a diamond culet of 300 μ m37,38. Silicone oil was used as a pressure medium. Reports suggest that 
silicone oil hydrostaticity is as good as a 4:1 methanol:ethanol mixture at low pressures to ~20 GPa and behaves 
like argon above 30 GPa39,40. The Raman spectra were collected using a micro-confocal Renishaw Raman system 
with a 532 nm green laser38. A stainless steel gasket was used and a 100 μ m sample hole was drilled with a laser 
drilling system. The pressure was monitored by the Ruby R1-R2 line shift. The in situ synchrotron micro X-ray 
diffraction experiment was carried out at Beamline 10XU in Spring-8 and the incident X-ray wavelength was 
0.4142 Å. The patterns were collected using a Perkin Elmer digital X-ray flat panel detector (FPD, XRD0822 
CP23; 1024 ×  1024 pixels; 0.2 mm pixel pitch). Infrared spectra were collected in situ inside the DAC using IR 
diamonds at Beamline 1.4.4 in the Advanced Light Source at Lawrence Berkeley National Laboratory, using KBr 
as the pressure medium.

High-pressure electrical resistivity measurements at room temperature. In situ high-pressure 
electrical resistance measurements were conducted with a four-probe resistance test system in a DAC at pressures 
up to 43.09 GPa. The mixture of boron nitride (BN) and epoxy was loaded between the sample and the gasket 
to provide an electrical insulation layer. The other parts of the gasket were covered with insulating glue to avoid 
contact between the conductive leads and metal gasket. The sample was loaded into the BN hole without a pres-
sure medium. Four platinum foils were arranged to contact the sample in the chamber. A Keithley 6221 current 
source and 2182A nano-voltmeter were used as the current supply and voltmeter, respectively. The resistance was 
determined by the Van de Pauw method, similar to that described in reference41.

Figure 5. The IR reflectance spectroscopy of Mn2O3 under high pressure. Some changes at certain pressures 
(5.7 GPa, 23.5 GPa, 32.5 GPa) indicate electronic structural changes.
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