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Abstract
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-
pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; 
and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled 
the exploration of rich high-pressure (HP) science. In this article, we first introduce the 
essential concept of diamond anvil cell technology, together with recent developments and 
its integration with other extreme environments. We then provide an overview of the latest 
developments in HP synchrotron techniques, their applications, and current problems, 
followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary 
fields. These HP studies include: HP x-ray emission spectroscopy, which provides information 
on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes 
the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering 
spectroscopy, which accesses high energy electronic phenomena, including electronic band 
structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic 
x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and 
spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides 
phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which 
provides information on hierarchical structures, dynamic processes, and internal strains; 
HP x-ray diffraction, which determines the fundamental structures and densities of single-
crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray 
diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools 
with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, 
has enabled investigations of the structural, vibrational, electronic, and magnetic properties of 
materials over a wide range of pressure-temperature conditions.

Keywords: high pressure, diamond anvil cell, x-ray diffraction, x-ray spectroscopy,  
x-ray imaging, synchrotron radiation

(Some figures may appear in colour only in the online journal)

High-pressure studies with x-rays using 
diamond anvil cells

Review

IOP

2017

1361-6633/17/016101+53$33.00

doi:10.1088/1361-6633/80/1/016101Rep. Prog. Phys. 80 (2017) 016101 (53pp)

publisher-id
doi
mailto:hmao@carnegiescience.edu
mailto:gshen@carnegiescience.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6633/80/1/016101&domain=pdf&date_stamp=2016-11-22
http://dx.doi.org/10.1088/1361-6633/80/1/016101
SH-USER1
Text Box
HPSTAR
321-2017



Review

2

1.  Introduction

1.1.  High pressure—a dimension in physical sciences

Pressure (P) is an intensive variable, defined as a measure of 
how the internal energy of a system changes when it expands 
or contracts at constant entropy (S) or temperature (T):
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where E, F, V are internal energy; Helmholtz free energy; and 
volume, respectively. As a fundamental thermodynamic vari-
able, with one of the largest ranges [1], pressure is not only 
widely used to describe the extreme conditions of materials 
(such as those existing in impacts and detonations, or inside 
the Earth and celestial bodies), but it is also experimentally 
controlled to induce several important effects on interatomic 
interactions [2, 3]. Pressure tunes and alters all chemical, 
structural, mechanical, electronic, magnetic, and phonon 
properties. It pushes materials across boundaries between 
soft and superhard, brittle and ductile, insulating and metal-
lic, ferromagnetic and superconducting, amorphous and crys-
talline, ionic and covalent, and vigorously reactive and inert. 
The recent development of synchrotron radiation (SR) probes 
[3–6] has opened a vast new window for studying materials 
in situ at high-pressure (HP), and at temperatures varying 
from cryogenic to thousands of degrees [7]. Indeed, pressure 
provides a fundamental dimension in physical sciences, and 
surprising HP physics and HP chemistry are revealed. Under 
high pressures, many new ‘rules’ in chemistry are established; 
novel materials are formed and discovered, and various routes 
for recovery to ambient pressure are established and explored. 
HP studies are crucial for understanding the interior miner-
alogy, composition, dynamics, and formation of candidate 
materials inside the Earth and celestial bodies. The impact of 
HP science has been widely recognized, particularly in the last 
decade with the synergy between advances in pressure vessel 
design and in situ probes.

1.2.  Synchrotron x-rays—penetrating probes for minute high 
pressure samples

Pressure can be also viewed as the force acting perpend
icularly on a unit area. Therefore, static high pressures are 
generated in laboratories at the expense of reducing sample 
volumes. At multi-megabar pressures, sample dimensions are 
typically less than 30 µm. To investigate physical and chemi-
cal properties in situ under HP, powerful penetrating micro-
sampling probes must be developed to reach the minute 
samples through the wall of the pressure vessel and to separate 
the weak sample signals from the background signals of the 
massive surrounding vessel materials. The arrival of SR x-ray 
sources provides a perfect solution (figure 1). Since the 1980s, 
great efforts have been made to take advantage of the charac-
teristics of SR for HP research, including: (1) high intensity 
over a broad energy range, (2) low emittance (small angular 
divergence), (3) tunable energy and bandwidth with the use of 
monochromators, (4) pulsed time structure, (5) polarization of 

the radiation, and (6) coherence of the x-ray wave. Recently 
constructed synchrotron facilities have achieved a high degree 
of orbit stability [8, 9], providing highly stable x-ray beams in 
terms of intensity and position that are critical for HP experi-
ments. The unique SR characteristics are unleashing the rich 
potential of HP science.

HP science has become an important field for the applica-
tion of SR. For instance, the spatial resolution and intensity of 
conventional x-ray, neutron, and ultrasonic sources are insuf-
ficient for resolving the µm-size samples at megabar pressures, 
while the conventional microprobes using focused ultraviolet 
radiation (UV microscopy), electrons (electron microscopy), 
ions (SIMS), or near-surface contacts (atomic force micros-
copy) require a vacuum environment which is opposite to the 
HP condition. The arrival of high-energy SR thus enjoys the 
unique advantage of exploring the vast frontier opened up for 
SR-HP applications. The high brightness of SR has enabled the 
development of various HP-SR techniques. Continuously tun-
able wavelength opens up new capabilities, in particular in HP 
x-ray spectroscopy and HP inelastic x-ray scattering [10–12]. 
The pulsed timing structure, together with the high brilliance, 
allows the study of time dependent phenomena [13, 14] such 
as phase transition kinetics, chemical reaction processes, trans-
port phenomena, and metastable phases at HP and high/low 
temperatures. The polarization of synchrotron radiation has 
been extensively utilized for studying magnetic systems at HP 
[15, 16], while the coherence has been used for mapping struc-
ture and strain in nanometer-scale grains [17–19].

During the past decade, we have witnessed extraordinary 
advances in HP-SR studies, largely reflected in three frontiers. 
First, HP research is made much more versatile by integrating 
other dimensions of extreme environments, such as temper
ature, magnetic field, radiation flux. Secondly, while each 
individual SR technique, coupled with HP samples, provides a 
valuable probe for a specific property, the combination of sev-
eral techniques forms a comprehensive toolbox for addressing 
major questions. Thirdly, HP-SR research impacts on multidis-
ciplinary fields, including physics [20], chemistry [21], mat
erial sciences [22], geosciences [23, 24], and biosciences [25], 
and is driven by the scientific agendas of each community.

This article is organized according to the development of 
these three frontiers. We will first introduce the essential con-
cept of diamond anvil cell technology, together with recent 
developments and its integration with other extreme environ
ments. This is followed by the latest developments in HP-SR 
techniques, their applications, and current problems. We will 
then discuss the key multidisciplinary fields of HP scientific 
studies using x-rays. The focus is to summarize the fast-paced 
progress in the past decade, with the key background briefly 
discussed.

2.  Generation of high pressure—the diamond anvil 
cell technology

Among commonly used HP apparatus are diamond anvil cells 
(DACs), large volume presses (LVP), and shock wave devices. 
DACs are capable of generating pressures beyond 400 GPa 
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[26, 27] (with a record claimed beyond 1 TPa). LVP gener-
ates modest pressures (currently up to 109 GPa) [28], with a 
relatively large sample volume, as the name infers. In shock 
wave experiments, the sample is subjected to transient high 
pressures and temperatures by dynamic processes. Multi-
megabars in excess of 100 megabar pressures may be gener-
ated in a short time scale ranging from nano- to femto-seconds 
[29]. Here, we focus our discussions on the DAC, which con-
sists of three basic components: opposing anvils, a confining 
gasket, and sample chamber (figure 2).

2.1.  Anvils

Single-crystal diamond is generally used as the anvil mat
erial, due to its outstanding properties including: the high-
est known hardness and fracture toughness, highest known 

thermal conductivity, very low friction and adhesion, ultra-
high melting temperature, the highest electron dispersion, 
high dielectric breakdown, radiation hardness, high magnetic-
field compatibility, and biocompatibility. These properties 
have been exploited in the DAC techniques [30]. Diamond 
as the key anvil materials is adopted to endure the harshest 
extreme environments, and at the same time, as the window 
material for measurements with x-ray energies above 5 keV, 
UV–VIS–IR radiations below 5 eV, ultrasound, neutrons, and 
electric-magnetic probes [31, 32]. The DAC is the only static 
HP apparatus for studies in multi-megabar pressures regions 
[26, 27, 33], temperatures as high as 7000 K [34] and as low 
as 0.03 K [35], and a full range of in situ characterizations 
of material properties at controlled and defined extreme P-T 
conditions. Diamond is also of superior chemical inertness as 
a chamber in contact with a wide variety of samples, although 

Figure 1.  Various x-ray probes have been developed to study samples under extreme environments and their applications to 
multidisciplinary sciences.

Figure 2.  Illustration of the three basic components of a diamond anvil cell: opposing anvils, a confining gasket, and sample chamber. A 
beveled-anvil geometry is shown with culet size A beveled to B at a bevel angle θ.
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there are reports showing that diamond can be attacked by 
some samples (e.g. Li [36]), and a trace amount of carbon 
from diamond may react with the sample (e.g. [37]). Sintered 
nanocrystalline diamond has been recently used as anvil mat
erial for its high strength, lack of single crystal x-ray reflec-
tions [38, 39], and its lower thermal conductivity in laser 
heating studies [40]. Other hard materials, such as sapphire 
and moissanite, have also been used for special applications, 
but with limited pressure ranges [41–43].

A typical diamond anvil has a small culet on one end and 
a large base (table facet) at the other end (figure 2). Recently, 
a conical anvil design has been introduced for large access 
openings [44]. The force applied to the table facet or the coni-
cal area of opposing anvils is transmitted directly to the small 
culet facet, where the pressure is amplified according to the 
area ratio. The anvils sustain increasing pressures up to the 
strength limit of the diamond. At extreme conditions, the 
diamond anvil in the culet region may deform elastically, to 
a large extent. For example, a bending of 17° within a 300 
µm culet area has been observed [45, 46]. With such a large 
deformation, small defects or strain may cause fractures pre-
maturely in diamond [7]. The quality of anvils becomes criti-
cal for reaching extremely HP conditions. Factors in selecting 
diamond anvils include: size, shape, birefringence, optical 
transparency, orientation, fluorescence, etc. For example, a 
well-tested, beveled-anvil geometry with culet size of 300 µm 
beveled to 50 µm at a bevel angle of 8.5° has been widely used 
for reaching above 300 GPa in DAC [47]. Using a double stage 
mechanism, pressures above 500 GPa have been reported [27, 
48, 49]. However, so far no other groups have succeeded in 
generating similar high pressures using this technique [50, 
51]. In particular, the pressure distribution around the tip of 
the second anvil remains unknown.

The diamond anvil also provides an axial window through 
the parallel table and culet facets. However, the extreme con-
ditions require maximum mechanical support, by minimiz-
ing the angular opening of the seats supporting the tables, 
thus reducing the axial access to the sample. In addition, 
the diamond becomes increasingly absorbant of x-ray ener-
gies below 10 keV. For instance for Ce L3-edge at 5.7 keV, the 
transmission is only 10−2 through 1 mm thick diamond, or 
10−10 through the 5 mm thick pair of anvils. Progresses in sev-
eral areas during the past decade have been made in resolving 

the access dilemma without sacrificing the HP capabilities. A 
new type of conical anvil and seat [44, 52] has much larger 
axial aperture (>90°) than the conventional flat seat supports 
(<40°). The larger support area of the conical seat allows sig-
nificantly higher loads (figure 3). Bassett et al [53, 54] drilled 
holes or grooves on the diamonds to reduce the optical path 
through them down to several hundred microns, thus greatly 
reducing the diamond absorption between 5 and 10 keV and 
enabling HP x-ray spectroscopy of transition element K-edges 
(e.g. Mn [55] and Fe [56]) and rare-earth element L-edges 
(e.g. Ce [57, 58]). Perforated and partially perforated anvils 
have been commercially available and widely used for either 
reducing the diamond absorption [59] or minimizing the 
background scattering signals from the anvils [60, 61]. The 
development of panoramic DAC with the Be gasket [62, 63] 
or other low-Z materials [64] opened windows through the 
radial direction (i.e. perpendicular to the compression axis), 
and overcame both the geometric and absorption constraints 
of the conventional DAC.

The so-called designer anvils with diamond encapsulated 
thin-film microcircuits have been fabricated and used for HP 
electrical conductivity and magnetic susceptibility measure-
ments [65, 66]. The embedded leads or coils are electrically 
insulated from the metallic gaskets commonly used. Such 
diamond encapsulated probes remain functional to multi-
megabar pressures.

2.2.  Gaskets

The gasket is an essential component in the DAC and serves 
several critical functions, including supporting the pressure by 
virtue of the anvil-gasket friction and encapsulating the sam-
ple. In some applications, the gasket may be used as windows 
for x-ray and neutron radiations, and/or outlets for electrical 
probes. High strength metals are often chosen as gasket mat
erials. A gasket must also possess a certain level of ductility 
to allow the volume reduction corresponding to the pressure 
increase in the sample chamber. Around the diamond culet 
area, the gasket forms a thick ring that supports the anvils like 
a belt (figure 2), without which the anvils would not survive 
above 30–40 GPa. The effectiveness of the support depends 
on the tensile strength and thickness of the gasket. Between 
two parallel culets, the gasket sustains a large pressure 

Figure 3.  Geometry of Almax–Boehler type anvils supported by conically shaped areas, providing large access openings for optical and 
x-ray measurements.

Rep. Prog. Phys. 80 (2017) 016101



Review

5

gradient from the minimum stress at the edge of the culet to 
the maximum stress near the center. In HP experiments above 
~30 GPa, the gasket thickness (l) no longer depends upon its 
initial thickness; it is rather an intrinsic behavior of the gasket 
material related to a function of the shear strength (σ) and the 
pressure gradient along the radius (r) [67, 68].

  /( / )σ= ∂ ∂l P r2� (2.1)

Various materials are used as gaskets to optimize specific func-
tions and experimental goals. Hardened steel, high strength 
tungsten and rhenium are among the commonly used gasket 
materials. Composite gaskets can be constructed to optimize 
different functions at different parts of the gasket, e.g. insulat-
ing inserts (MgO, Al2O3 or cBN) are added to metallic gas-
kets for the introduction of electrical leads into the HP region. 
Using a composite gasket which includes diamond powders 
[69] or diamond coating on the flat region of the gasket greatly 
increases the shear strength (σ) and consequently increases 
the gasket thickness by 2–3 times (equation (2.1)), thus effec-
tively increasing the sample volume. To eliminate the grain 
boundary fracture and to avoid interference of x-ray scat-
tering from crystalline gasket materials, high-strength bulk 
metallic glass has been used as gasket to above 100 GPa [70]. 
Chemical inertness must also be carefully considered when 
choosing gaskets for reactive samples.

An important development is the use of the gasket as an 
x-ray window, allowing x-ray measurements in radial geom-
etry [62, 63] down to x-ray energies ~5 keV. The gasket 
materials are chosen for mechanical strength, transmission 
at energies of interest, and low scattering background. High-
strength beryllium [63], amorphous boron epoxy inserts [71] 
with kapton belts [64], and compressed superhard graphite 
[72] inserts with beryllium belts [73] have been used to reach 
megabar pressures. Cubic BN [74, 75] mixed with a small 
amount of epoxy is also widely used as a gasket or insert 
material for high strength, large thickness, electrical insula-
tion, and x-ray transparency.

2.3.  Pressure medium in the sample chamber

After gaskets are machined or indented to match the shape of 
the diamond culets, a hole is drilled at the center by a mechan-
ical drill, electrical discharging machining, or laser ablation, 
[76] to form a sample chamber (figure 2). Multiple holes may 
be drilled [77] for comparative studies or to avoid chemical 
reactions.

When a solid sample is surrounded by a fluid medium 
during compression, the sample is subjected to a hydrostatic 
pressure, where the stress is uniform in all directions. At suf-
ficiently HP, all fluids solidify, with liquid helium solidifying 
at the highest pressure of 11 GPa at 300 K [78]. Pressure is 
then transmitted through the solid medium which has a finite 
strength, leading to non-hydrostatic conditions with pres
sure anisotropy, inhomogeneity, and gradient. To eliminate or 
reduce such effects, pressure media are chosen for their low 
strength and chemical inertness to the sample. A mixture of 
methanol–ethanol in 4:1 ratio is commonly used as a fluid 
medium to 10 GPa [79], above which its strength rises sharply. 

Inert-gas solids are commonly used as pressure media to pro-
duce quasihydrostatic conditions up to 8 GPa in argon, 20 GPa 
in neon, and over 100 GPa in helium [80–82]. Hydrostatic lim-
its of 11 commonly used pressure transmitting media were 
carefully reviewed by Klotz et al [83].

Gas pressure media can be loaded by placing the entire 
DAC in a large gas pressure vessel, with the cell incom-
pletely closed so that the medium can enter the gasket hole 
[84]. The gas is pumped into the vessel to a nominal pressure 
of ~200 MPa and fills the DAC sample chamber as well as 
its surroundings. A feed-through mechanism is then used to 
close the DAC sample chamber and seal the sample in the 
gas medium inside the gasket. The gas-loading method [85, 
86] has the advantage of loading gas mixtures without phase 
separation and low melting temperature gases such as He, H2, 
and Ne, without trapping bubbles in the gasket. However, the 
method uses a significant quantity of HP gas that requires rig-
orous safety precautions. A simple alternative is to use liquid 
nitrogen cooling to liquefy gases inside the DAC. This method 
is used extensively for loading argon as a medium, and has the 
advantage for loading expensive and rare gases in µl quanti-
ties (e.g. isotopically enriched 83Kr [87]).

On the other hand, pressure anisotropy and gradients pro-
vide opportunities for studying materials’ mechanical proper-
ties. When properly quantified, experiments under deviatoric 
stress can provide rich additional information about strength, 
plasticity and rheology of the samples that are unavailable 
with hydrostatic experiments [88]. The uniaxial compres-
sion of a DAC is suitable for quantitative studies of deviatoric 
stress at ultrahigh pressures [89–91].

2.4.  Pressure determination

For pressures above several GPa, the primary pressure scales 
are either based on the pressure-volume (P-V) equation  of 
state (EOS) or the acoustic velocity-density relation. A com-
monly used primary scale is based on shock-wave measure-
ments of particle velocity (UP) and wave velocity (US) that 
are used to calculate the P-V relations at isothermal condi-
tions. The shock-wave scale carries uncertainties of about 
6–10% [92].

Another primary scale is based on the density (ρ) measured 
with x-ray diffraction and the acoustic velocity (Vφ) measured 
with ultrasonic or Brillouin scattering methods on the same 
sample under the same compression conditions. Pressure is 
then derived directly by

 ∫ φ ρ=P V d .2� (2.2)

Using this approach [93], ρ can be determined by x-ray dif-
fraction to an accuracy of better than 0.2%, and Vφ can be 
determined by single-crystal Brillouin spectroscopy, impul-
sive stimulated light scattering, or phonon inelastic x-ray 
spectroscopy to an accuracy of 1%.

Once a primary standard is established, any other pressure-
dependent variable can be used as a secondary standard for 
pressure determination. Secondary standards are chosen for 
their accessibility, sensitivity, and resolution. Using the P-V 
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EOS of well-studied materials (e.g. MgO, NaCl, Au, Pt, W) 
as a primary or secondary standard, pressures can be deter-
mined by measuring the volumes of these standard materials 
by HP x-ray diffraction. Another popular and convenient sec-
ondary standard is the optical methods, e.g. using the ruby 
fluorescence shifts. Tiny ruby grains are added in the sample 
chamber [94], and the pressure-shift of the ruby fluorescence 
wavelength can be easily probed with a laser beam through 
diamond windows [82, 92, 95]. The accuracy of the Mao et al 
ruby scale [95] is found to be accurate within 2% up to 55 GPa 
using the Brillouin scattering and x-ray diffraction techniques 
[93]. At higher pressures, the quasi-hydrostatic ruby scale [95] 
appears to underestimate pressures, based on a comparison of 
recent x-ray diffraction data for metal standards such as Au, 
Pt, Ta, W, Cu, and Al [82, 96]. More consistent scales have 
been proposed by the more recent ruby scale of Dewaele et al 
[82] and an internally consistent scale by Fei et al [97]. At 
megabar pressures, Raman shift of diamond anvils may be 
used to measure pressure [26]. Raman shift of cBN [98] are 
pursued for having 1% precision in pressure, after considering 
the propagation of errors from various sources.

2.5.  High pressure samples

Handling HP samples can be challenging, not only because of 
small sizes, but also the inaccessibility and possible changes 
in crystallinity, mechanical properties, and chemical reactiv-
ity. Mastery of HP sample preparation is a prerequisite for 
successful experiments.

HP samples are always surrounded by other materials 
(media, gasket, pressure standards, insulating layers, etc). 
Chemical reactivity needs to be carefully considered in select-
ing these materials, including possible reactivity changes at 
HP [99, 100]. Most HP experiments are conducted on poly-
crystalline samples. Recently, a growing effort has been 
made on measurements using single crystals [101–103]. To 
preserve the crystallinity of single-crystal samples, the use of 
hydrostatic medium is necessary. Sample size may be chosen 
for optimizing x-ray scattering efficiency. For instance, one 
absorption length (transmission intensity attenuation to 1/e) 
provides optimal scattering efficiency. However, the available 
HP sample size is constrained by the chamber size in the DAC 
and the desired pressure range. With the high brilliance of syn-
chrotron x-ray probes, samples as small as a few microns are 
usually sufficient for obtaining good signals in x-ray measure-
ments. Typical sample configurations are shown in figure 4. 
A small probing size allows studies of multiple samples in a 
single chamber [82, 97] or in multiple chambers [77]. With 
the development of micro-manipulating techniques and sub-
micron x-ray probes, special sample configurations (e.g. sam-
ple grid, multilayers) may be used for combinatorial studies.

2.6.  Rapid compression and decompression

Pressures in the DAC are often controlled mechanically by 
tightening screws, and the DAC is usually viewed as a type of 
static HP device. When screws are rapidly turned, pressures 
may be changed quickly; for example, synthesizing metastable 

phases of Si and Ge when quickly decompressed from HP 
phases [104, 105]. Recently, the dynamic DAC (dDAC) has 
been developed for repetitively applying time-dependent 
load-to-pressure cycles [106–108]. Electromechanical piezo
electric actuators are used to replace screws in dDAC and 
enable rapid and precise control of a time-dependent applica-
tion of load or pressure. A compression rate as high as  >35 
TPa s−1 has been reached for a Mo sample in the megabar 
pressure region (figure 5). In the dDAC, the pressure variation 
is achieved through the change in sample chamber volume, as 
the actuators change the load on the cell. Reproducible cycles 
of the load/pressure can be achieved only within the gasket’s 
elastic limit, which is usually low, but increases with increas-
ing pressure. If the load exceeds the elastic limit of the gasket, 
the gasket will be plastically deformed and the sample pres
sure will not recover to its initial state.

The membrane (or diaphragm) technique [109] is widely 
used for remotely controlling pressure, particularly for low 
temperature experiments. Recently, the membrane control has 
been used for rapid compression and decompression coupled 
with fast x-ray detectors, such as Pilatus [108, 110](figure 
5). Phase transformation pathways are strongly influenced 
by the time dependence of the driving mechanism (compres-
sion, thermal transfer, strain, irradiation, etc). This rapid com-
pression and decompression capability allows studies of the 
nucleation of phase transitions, phase growth, and metasta-
ble phases at various compression rates [105, 107, 111, 112]. 
In particular, this capability covers the region of compres-
sion rates between static techniques (DACs and LVPs) and 
dynamic shock-driven devices (gas guns, explosive, magnetic 
pulse compression, and laser shock), a region that has been 
sparsely explored.

2.7.  Integration of pressure and temperature

Adding another intensive variable, temperature, greatly 
expands the bountiful ground of HP studies in the vast P-T 
space. Various temperature-controlling techniques have been 
integrated with the DAC ranging from sub-K to over 7000 K.

2.7.1.  Cryogenic temperatures.  DAC can be inserted in a 
cryostat and cooled down to below 4 K. There are various 

Figure 4.  A typical sample configuration in a diamond anvil cell.
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types of cryostat for accommodating different temperature 
ranges, types of DACs, and probe requirements [108, 113, 
114] (figure 6). Gas (N2, He) flow cryostat can be routinely 
operated at ~5 K, and can reach temperatures below 2 K [115]. 
It is versatile and can accommodate practically any type of 
DAC; including large DAC such as the long piston-cylinder 
DACs with lever arm control. Compact cold-finger cryostats 
provide much more flexibility and large access openings, but 
with a limited low temperature down to 7–8 K. Compact size 
and large openings allow rotation of the cryostats during expo-
sure for single crystal diffraction and inelastic x-ray scatter-
ing. Cryostats designed for DAC can have multiple windows 
(kapton, mylar, or other materials of choice) to accommodate 
optical and x-ray diffraction and inelastic scattering measure-
ments in forward, lateral, or backward scattering geometry.

Pressure in cryostats/DACs can be controlled remotely 
at low temperature by either helium compressed diaphragm 

(membrane) control, or mechanical means (gearbox, lever 
arm assembly). The pressure at cryogenic temperatures can 
be measured with online ruby/Raman systems [108, 116], or 
using x-ray diffraction standards such as Au, NaCl, or MgO. 
Temperature of the sample in a cryostat is typically controlled 
by adjusting the flow rate of cryogen into the cryostat and a 
heating wire attached to a proportional-integral-derivative 
(PID) control loop. Multiple stages may be added to a cryostat 
to achieve temperature lower than liquid helium. For example, 
temperatures down to 2 mK [35] can be reached by employing 
a dilution refrigerator or dry dilution refrigerator.

Specific cryostats are designed to meet the constraints of 
experimental conditions. Some typical requirements for HP 
studies include (1) precise motion controls including rotation 
around the vertical axis, (2) large openings (>60°) for sin-
gle crystal x-ray diffraction and inelastic x-ray scattering, (3) 
versatile geometry for accommodating a variety of DACs, (4) 

Figure 5.  (top) A setup for rapid compression and decompression experiments at the HPCAT 16-ID-B beamline. (bottom) A compression 
rate of  >35 TPa s−1 has been reached on a Mo sample between 150 and 280 GPa.
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remote pressure controls using either pneumatic or mechani-
cal methods, and (5) the position stability of the DAC while 
its temperature changes.

2.7.2.  External resistive heating.  HP samples can be heated 
by conduction with the heat source outside the sample cham-
ber. There are two major varieties of the resistive heating 
methods—heating elements that are either external or inter-
nal to the sample chamber. External furnaces provide precise 
and well-controlled temperature conditions. The entire DAC 
may be heated by a resistively heated furnace up to 700 K. 
For higher temperatures, a small heater very close to diamond 
anvils may be used for temperatures up to 1200 K [117, 118]. 
With a graphite heater around diamond culets, temperatures 
as high as 1700 K have been reported [119]. However, there is 
an intrinsic temperature limit, due to the rapid graphitization 
of diamond above 1900 K, even in an inert environment or 
vacuum [120]. In addition, due to the softening of the stress-
bearing components, including the gasket, the seats for anvils, 
and the diamond anvil itself, maximum attainable pressure is 
then limited.

Similar to the cryogenic cooling technique, one advantage 
of the external heating technique is the independent control of 
temperature, i.e. temperature controls are not affected by the 
changes of samples (phase transitions, property changes, etc) 
or pressure conditions. Specific P-T paths may be performed 
with in situ x-ray measurements, such as isothermal compres-
sion [97] or isobaric path [121].

Temperatures are measured by placing thermocouples 
close to the sample position, often attaching them to one or 
both diamond anvils. Notably, the temperature readings may 
vary as the thermocouple locations are changed, leading to a 
sizable offset between the thermocouple readings and the true 
temperature at the sample location. This offset in temperature 

is often overlooked in literature and can be monitored and cor-
rected by using the infrared spectral radiometric thermometry. 
For example, temperatures down to 530 K can be measured by 
collecting thermal radiation in the 1–2 µm wavelength range 
[122].

2.7.3.  Internal resistive heating.  On the other hand, the inter-
nally heated method locally heats the sample inside the sam-
ple chamber. Placing heating components in the 100 µm size 
DAC sample chambers has proven extremely challenging. 
Often, the sample itself is used as a conductive heating element 
and heating is applied electrically [123, 124]. Alternatively, a 
metallic wire placed inside the gasket can be used as an inter-
nal heater for heating samples nearby; for example, MgO and 
Pt has been placed in a tiny hole in a Re wire for x-ray dif-
fraction studies up to 1900 K at 80 GPa [125]. Temperatures 
are measured by thermal radiation, and may be reached close 
to the melting temperatures of the conductors. A successful 
loading may result in stable heating in an area of  >20 µm in 
dimension, sufficiently large for many x-ray measurements. 
More sophisticated internal heating techniques may require 
building a resistively heated wire circuit in the diamond anvil 
culet, using the chemical vapor deposition method [126, 127].

2.7.4.  Laser heating.  The transparency of diamond allows 
applications of near- and mid-infrared lasers (CO2, Nd:YAG, 
Nd:YLF) to heat samples between two diamond anvils at HP. 
DAC samples can achieve temperatures in excess of 7000 K. 
This method has led to major discoveries of new high P-T 
phases [128–131]. The infrared laser passes through the trans-
parent diamond and only heats the IR-absorbing samples, 
without heating the gasket and other DAC components, thus 
avoiding interference with the DAC operation and sample 
probing. Largely due to the steep temperature gradients 

Figure 6.  Photographs of various types of cryostats used for high pressure x-ray studies at HPCAT. (A) Compact cold-finger cryostat for 
diffraction and spectroscopy measurements and large flow cryostat for diffraction. (B) A compact combination cryostat for diffraction 
and absorption measurement at HPCAT 16-BM-D beamline, with an online ruby system and MAR345 area detector on the background. 
(C) Symmetric DAC coupled with a mechanical pressure control device (gearbox) in large flow cryostat. (D) Double-diaphragm pressure 
control frame, allowing precise pressure control at different temperatures, for compact cryostat. (Courtesy of Stanislav Sinogeikin.)
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outside the heating spot, inconsistent results were reported 
initially by different laboratories, causing confusion about the 
efficacy of the laser heating technique. Now, significant prog-
ress in shaping and defining the temperature distribution in 
the laser heated DAC has been made. The double sided heat-
ing technique [132, 133] exploits optimal laser characteristics, 
sample configuration, and optical arrangement.

The newer fiber lasers, widely used in most laser-heated 
DAC applications, have greater design flexibility than tra-
ditional YAG or CO2 lasers and prove considerably more 
energy efficient. The high energy efficiency has resulted in 
high thermal stability, thus delivering laser beams with high 
stabilities in power, power distribution, and pointing angles. 
Furthermore, fiber laser is available with hundreds of Watts 
power and better collimation than the rigid YAG or YLF laser. 
A high power fiber laser (>200 W) allows defocusing the laser 
beam and achieving large (>100 µm in diameter) heating 
areas on the sample [134]. With developments in x-ray beam 
controls, an x-ray beam size of 3–5 µm FWHM is common at 
several beamlines, with the tail at full width of 1% maximum 
less than 30 µm. A larger heating area relative to the x-ray 
beam size means less temperature gradient and more accurate 
x-ray measurements at extremely high P-T conditions.

In designing the laser delivering optical system, a number 
of factors should be optimized simultaneously, such as (1) 
compactness, (2) stability, (3) focus size control, (4) power 
uniformity at the focal area (to minimize the radial temper
ature gradient), and (5) double sided heating (to minimize the 
axial temperature gradient). Different modes of lasers [135] 
or beam profilers [136] have been used to achieve flap-top 
profiles in laser power distribution. However, due to possi-
ble inhomogeneities in HP samples, even a flat-top laser may 
not provide uniform heating of the sample. Using high power 
lasers, which allow defocusing to a large degree, is an effec-
tive way to reduce radial temperature gradient. Together with 
double sided heating, a uniformly heated volume can be gen-
erated at HP in DAC. With x-rays measuring bulk properties, 
a uniformly heated volume much larger than the probing x-ray 
beam size is a prerequisite for all successful quantitative x-ray 
measurements, as illustrated in figure 7.

Because diamond has the highest known thermal conduc-
tivity, any heating by the laser would be conducted away by 
the anvil when a sample is in direct contact to the diamond 
anvils, resulting in the inefficient heating of the sample. 
Compensating the heat lost by greatly increasing the laser 
power will risk damaging the diamond anvils. Therefore, the 
design of the sample configuration and careful preparation of 
the cell are keys for efficient heating and minimizing temper
ature gradients. Employing insulating layers (e.g. Ne, Ar, 
MgO, Al2O3, NaCl, KCl, etc) with sufficient thickness and 
thermal resistance between the sample and anvil is crucial in 
the design of sample configurations and for achieving suc-
cessful heating.

The accuracy and precision of temperature measurements 
in the laser-heated DAC have improved significantly with the 
use of spectral radiometry. The thermal radiation spectrum is 
fitted to the Planck radiation function to determine the temper
ature [123, 137]:

ε λ=λ λ
λ− − −  ( / )I c e c T

1
5 1 2� (2.3)

where I is spectral intensity, λ wavelength, ε emissivity, 
and two constants c1  =  2πhc2  =  3.7418  ×  10−16 Wm2 and 
c2  =  hc/k  =  0.014 388 mK, where h is Planck constant,  
c speed of light, and k Boltzmann constant. Temperature mea-
surements are limited to above 1000 K, due to the insensitivity 
of the CCD detector in the long wavelength (IR) region which 
is essential for characterizing temperatures below 1000 K. The 
problem could be resolved by using an IR sensitive InGaAs 
detectors and IR optics to extend the temperature measure-
ment down to 500 K [122]. The region between 300 and 500 K 
can be easily reached by external heating tapes, hot plates and 
many other simple methods, and can be considered as small 
perturbation of ambient temperature.

The laser heated DAC experiments have become a rou-
tine capability in HP studies with x-rays. Many synchrotron 
facilities are equipped with double sided laser heating systems 
[132, 134–136, 138–141]. Portable laser heating systems have 
recently been developed [122, 142, 143], expanding the use of 
the laser heating techniques into specialized beamlines with-
out permanent laser heating systems.

2.7.5.  Modulated laser heating.  An important advantage of 
the laser heating technique is its localized heating in space. 
With modulated heating, localization can be also achieved in 
time [134, 144–148]. Fast-modulated laser heating in a DAC 
can suppress thermally activated diffusion, suppress possible 
chemical reactions of the sample and environment, and reach 
even higher temperatures. The timing structure of synchro-
tron radiation is suitable for developing time-resolved x-ray 
measurements of samples following pre-designed heating 
paths. A laser pulse can be synchronized with synchrotron 
pulses, together with gated x-ray detector (e.g. Pilatus) and 

Figure 7.  Double-sided laser heating generates a uniformly heated 
volume, larger than the probing x-ray beam size. Insulating layers 
are essential for efficient heating and minimizing temperature 
gradients.
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time-resolved radiometric temperature measurements [148, 
149]. The modulated laser heating holds great potential for 
the applications of the laser heated DAC, such as the accurate 
measurement of melting curves, phase transition relations, 
thermal diffusivity, and P-V-T EOS.

3.  In situ HP-SR x-ray techniques

In the past decade, we have witnessed a significant surge of HP 
studies using synchrotron radiation. Many previous technical 
limitations in capability, precision, and accuracy have been 
removed through the optimization of source radiation, inser-
tion device, x-ray optics, sample environment, experimental 
configuration, motion control, automation software, advanced 
detectors and analyzers, and computing power. Among the 
wide array of HP x-ray techniques, structure determination 
using x-ray diffraction (XRD) remains the dominant one, 
while significant progress has been made in integrating other 
x-ray techniques for HP research, such as x-ray radiography 
and tomography [77, 150, 151], x-ray spectroscopy (absorp-
tion, emission) [10, 152], inelastic x-ray scattering (IXS) [11], 
and nuclear resonant scattering [153–155]. New HP synchro-
tron techniques are emerging rapidly; for example, in HP 
nano-imaging techniques (full field, position-scanning, and 
coherent diffraction imaging) [18, 151] and time resolved HP 
x-ray techniques [13, 148, 156].

3.1.  General features in HP x-ray probes

3.1.1.  Incident x-ray beam.  The high energy x-rays penetrat-
ing the pressure vessel are partially absorbed by the vessel 
materials as shown in figure 8. The high brightness and high 
collimation of SR allows small focused beams to impinge on 
the sample. It took nearly three decades to reduce the x-ray 
beam size from 30–50 µm to the current 2–3 µm in HP-SR 
research. This substantial reduction is responsible for many 
recent breakthroughs in HP science using SR. Beam sizes of 
a few tens of nanometers have been reached at specialized 
beamlines. Integrating HP with sub-µm beams enables the 
study of more complex and smaller samples at increasingly 
higher pressures and more extreme temperatures.

The x-ray beam size is commonly characterized by the full 
width at half maximum (FWHM) of peak intensity. Assuming 
a Gaussian distribution, the FWHM accounts for about 75% 
of the total flux. The beam size at full width at tenth maximum 
(FWTM) may be 2–3 times larger. The x-ray beam outside 
the FWHM area is often regarded as ‘tail’. Although the tail 
accounts for only ~25% of the total flux, it may extend to sur-
rounding materials with a much greater thickness, volume, or 
x-ray scattering power than the sample, contributing an over-
whelming amount of unwanted background signal. Therefore, 
properly screening the beam tail is important in any HP-SR 
experiment, particularly for samples with relatively low scat-
tering power such as amorphous materials or low-Z materials. 
Usually clean-up slits or pinholes, located as close to the sam-
ple position as possible, are installed [157, 158] to cut down 
the tail.

3.1.2.  Separating sample signals from background.  While 
maximizing signal-to-background ratio is important in all 
types of experiments, it is particularly critical in HP studies, 
because the volume ratio between samples which yield valu-
able signals and the surrounding materials which yield unde-
sired background can be as little as 10−5–10−9 (figure 2).

Proper collimation on the detection side is thus essential 
to reduce the background from surrounding materials along 
the incident beam path, before and after the sample. When HP 
devices were first integrated with SR, the energy dispersive 
x-ray diffraction technique (EDXRD) with a point detector 
was widely used. In EDXRD, a tight collimation (a lozenge 
shape collimation together with the small incident beam) can 
be established for selecting scattering signals from sample 
areas. Even today, EDXRD is still an effective technique for 
studying weakly scattering samples, such as amorphous and 
low-Z materials [159, 160]. Alternatively, a soller slit may 
be employed for background discrimination when the angu-
lar dispersive x-ray diffraction technique (ADXRD) with a 
2D area detector is used [161]. In IXS measurements, how-
ever, the collimation requirement is in conflict with the need 
of large solid angles for collecting weakly scattered signals. 
Recently, this problem has been reduced by using an x-ray 
focusing optic (e.g. x-ray polycapillary). As shown in figure 9, 
a focusing optic can be used for the collection of scattered 
x-ray with a sizable solid angle similar to an objective lens 
in the optical microscopy [162]. The focus provides desired 
depth resolution, significantly discriminating background sig-
nals originating from materials surrounding the sample.

Separating sample signals from background can also be 
achieved by using temporal discrimination methods. In nuclear 
resonant x-ray scattering, incident x-rays of meV resolution is 
tuned near the exceedingly narrow nuclear resonant line (at 
neV level). The delayed signals caused by the narrow nuclear 
absorption are slower than other prompt scatterings from 
electrons. By using time discrimination electronics, nuclear 

Figure 8.  X-ray absorption length of commonly used materials in 
diamond anvil cells as a function of x-ray energy. The absorption 
length (μt) is defined as μt  =  −ln(I/I0), where μ is the absorption 
coefficient; t the thickness of the material along the x-ray path; I and 
I0 are intensities of the incident and transmitted x-rays, respectively.
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resonant signals can be highly selective to specific elements 
and well separated from other background signals [154].

3.2.  HP x-ray diffraction

X-ray diffraction (XRD), which provides structural informa-
tion of high precision and accuracy, has long been the domi-
nant application of SR for HP research and is likely to remain 
so in the future. In general, the structural information is aver-
aged over the sampling volume. The basic information from 
XRD includes unit cell parameters, atomic positions, thermal 
parameters, and even electron density distributions. With spe-
cial XRD geometry and sample configuration, we may get 
information of strain, preferred orientation, site occupancy, 
and order–disorder. In addition, by tuning x-ray energies close 
to absorption edges of certain elements, anomalous XRD pro-
vides element-specific structural information.

Samples in various forms (single-crystal, polycrystalline, 
nano-crystals, amorphous/liquid) have been studied using HP 
XRD for structure and/or pair distribution functions [163, 
164], phase transitions (including melting), P-V-T EOS, elas-
ticity, and lattice strains [92, 165]. Several HP XRD techniques 
have been developed accordingly, including single-crystal 
XRD, polycrystalline (powder) XRD, and amorphous XRD. 
Recently, the multigrain crystallography method which iden-
tifies multiple single crystals in a polycrystalline sample, has 

been proposed [166] and applied successfully to HP studies 
(e.g. [167, 168]).

3.2.1.  HP angular dispersive XRD.  Angular dispersive 
XRD (ADXRD), using monochromatic radiation and two-
dimensional (2D) detectors, has been the primary technique 
in HP XRD. In HP experiments, samples may be subjected to 
some degrees of stress, causing diffraction lines broadening by 
non-hydrostatic conditions. Resolution in ADXRD is typically 
at Δd/d ~ 3  ×  10−3 (e.g. [157]) which is in general adequate 
for studying simple structured materials at HP conditions. 
With the developments in the HP technology, hydrostatic or 
quasi-hydrostatic conditions can be routinely achieved. The 
improved sample environment permits the studying of low 
symmetry materials and detecting subtle changes in volume 
or structure distortion in HP transitions, such as pressure-
induced Fermi-surface nesting [169], electronic topological 
(Lifshitz) transitions [170], morphotropic transitions [171], 
and 3d electron magnetic collapse [172–174].

The resolution in d-spacing can be improved by reducing 
incident beam divergence, lowering x-ray energy, and improv-
ing angular resolution in detecting systems; for example, by 
increasing sample-detector distance, reducing slit size or 
effective pixel size, or using an analyzer such as a silicon crys-
tal [175]. High resolution is achieved at the cost of through-
put. It is practical to have several switchable modes in HP 

Figure 9.  Illustrations of a slit system and a polycapillary optic, used to suppress signals from surrounding gasket materials in inelastic 
x-ray scattering measurements. A shaped slit in front of the polycapilary defines the momentum transfer. The inset is a photograph of a 
polycapillary optic placed close to the sample in a diamond anvil cell. (Courtesy of Paul Chow.)
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ADXRD, with high-throughput, low-resolution mode coupled 
by ‘zoom-in’ mode producing high-resolution XRD results. In 
HP ADXRD with DAC, an x-ray energy ranging from 10 keV 
to 100 keV is selected based on factors such as the coverage 
in reciprocal space, accessible angular openings of the HP 
device, penetrating power, and detector efficiency.

3.2.2.  HP energy dispersive XRD.  Using a polychromatic 
x-ray beam and an energy dispersive point detector at a fixed 
2θ angle, EDXRD is mainly used for studying liquid and amor-
phous materials. In EDXRD, one takes the advantages of low 
background due to well-defined collimation in the beam path 
to the detector, and large coverage in reciprocal space. In gen-
eral, EDXRD provides limited sampling of reciprocal spaces 
of crystallites in the sample because of the fixed 2θ angle, 
and is not suitable for probing samples near melting or with 
rapid crystal growth. Consequently, EDXRD may not provide 
reliable intensity measurements, making it difficult to obtain 
crystal structure information such as bonding characteristics 
and atomic positions. A technique has been developed for large 
volume presses by employing both ADXRD and EDXRD con-
cepts [176]. By scanning an energy-calibrated multichannel 
solid state detector, a large number of EDXRD patterns are 
obtained at pre-determined angular step-size. The entire data-
set can be re-arranged as ADXRD patterns by plotting intensi-
ties of each channel (corresponding to a given photon energy or 
wavelength). Subsets of the data covering narrow energy bands 
may be binned to give ADXRD patterns at a single wavelength 
with improved counting statistics; these may be combined with 
a multi-pattern Rietveld analysis to efficiently utilize the entire 
data set. While high photon-energy data provide coverage at 
the low d-spacing range, low photon-energy data cover the 
high d-spacing range. This scanning angle technique has been 
applied to DAC [177]. The multi-energy ADXRD data carry 
much more information than regular single-energy ADXRD, 
which could provide site-specific and element specific struc-
tural information for full structure refinement.

3.2.3.  HP polycrystalline (powder) XRD.  With an incident 
x-ray beam passing through the surrounding material and 
impinging upon a polycrystalline sample, the XRD rings are 

recorded on the detector. Polycrystalline XRD has been well 
established for studying HP crystallography, phase identifica-
tion, P-V-T EOS, melting, pressure-induced amorphization, 
texture, preferred orientation, line broadening analysis of par-
ticle size and strain effects, residual stress, etc. In polycrystal-
line XRD, good particle statistics are crucial for the sufficient 
quality of HP XRD. Another critical factor determining the 
quality of diffraction data is the resolution (Δd/d) because the 
polycrystalline XRD measures diffraction rings from all of  
the lattice planes simultaneously.

Intensity information is often used for structure refinement 
via the Rietveld method [178]. However, background subtrac-
tion by removing intensity contributions from the surrounding 
materials (anvils, gaskets) is not trivial and precautions need 
to be taken when using Rietveld refinement and interpret-
ing the results from those analyses. Background subtraction 
methods [179–182] developed for measuring pair distribution 
functions (PDF) of amorphous/liquid materials at HP may 
be applied to Rietveld refinement of polycrystalline sam-
ples. Although the Rietveld method is a very powerful tool 
for structure refinement, it does not provide the initial model 
to be refined. Traditional methods of structure analysis, such 
as Patterson synthesis or direct methods, are often used to 
establish the basic features of the structure, after which the 
Rietveld refinement can be carried out. Recently, many suc-
cessful structure predictions have been made by first principle 
calculations [183, 184]. These predictions can be used as ini-
tial input models in structure refinement too.

3.2.4.  HP single-crystal XRD.  In comparison to HP polycrys-
talline XRD techniques at synchrotron HP beamlines, HP sin-
gle-crystal XRD is relatively under-utilized. Recently, rapid 
developments in HP single-crystal XRD have been made [102, 
103, 185, 186]. In single-crystal XRD, the orientations and 
intensities of diffracted beams are measured. The high flux 
and small beam at synchrotron HP beamlines allow for effi-
cient studies of 1–10 µm crystal size. Detailed crystallographic 
information, such as structure model (atomic position, occu-
pancy, thermal displacement parameter) and electron density 
distribution can be obtained (figure 10). From single-crystal 
data, space groups and Miller indices can be unambiguously 

Figure 10.  Electron density distribution in β-Ge (a phase irrecoverable in ambient conditions), determined in situ at 12 GPa using the high 
pressure single-crystal technique: (a) 3D electron density map. (b) A contour map along [101] direction. The electron density topology is 
consistent with a model of covalent bonding in the ab plane and metallic bonding along the c axis.
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determined. Because the diffraction is measured at different 
orientations, the single-crystal XRD technique also has advan-
tages in dealing with materials of low crystallographic sym-
metries. Single-crystal XRD was first applied to HP using the 
EDXRD technique [80, 187]. Recently, synchrotron mono-
chromatic beams have been widely used in HP single-crystal 
XRD by rotating samples coupled with either a point detector 
[188] or an area detector [102, 167, 189]. Many HP beamlines 
in the world have established routine procedures for conduct-
ing HP single-crystal XRD experiments.

When there are constraints in rotating the sample, HP sin-
gle-crystal XRD experiments may be conducted by scanning 
monochromatic energies with an area detector [190] or by 
using polychromatic beam (the Laue approach). The HP Laue 
approach does not require rotation of the sample and could 
provide information on deformation, mosaicity, and strains 
[191, 192], thus enabling fast measurements at sub-second 
time scale.

3.2.5.  HP multiple grain XRD.  Polycrystalline structural 
refinement for ultrahigh-pressure samples becomes increas-
ingly challenging and the results could be uncertain. Single-
crystal structural refinement is necessary [193] but successful 
examples of growth and preservation of several µm-size sin-
gle crystals above 100 GPa are extremely rare [80, 194]. With 
the developments of micro-beam technology using SR, the 
minimal size needed for single-crystal diffraction has been 
reduced to sub-µm. Traditional powder samples may be 
treated as multiple grains. Grain growth can be further pro-
moted by laser heating and other heating means integrated 

with DAC, often resulting in ‘spotty’ patterns in diffraction 
images (figure 11). A new tool of ‘multigrain crystallography’ 
has been recently developed with the quality of the resulting 
refinements comparable to single-crystal work [166]. In the 
multigrain approach, the same data collection procedures as 
those in the single-crystal XRD are used. Diffraction signals 
up to hundreds of single crystals are simultaneously collected. 
The multigrain approach is an effective way to increase redun-
dancy and completeness in data collection, thus significantly 
improving the HP single-crystal data quality. HP multigrain 
XRD possesses great potential for the crystallographic studies 
of materials under HP, as demonstrated recently in studies of 
crystal structural determination of (Mg,Fe)SiO3 bridgmanite 
[195], post-bridgmanite [167], SiO2 [168], and β-Ge [103].

3.2.6.  HP amorphous XRD.  XRD has been widely used 
to determine structure factors of liquid/amorphous mat
erials at HP [179, 196, 197]. Interesting phenomena have 
been observed, including coordination number change [60, 
61], polyamorphism [198, 199], and long-range topologi-
cal order [200]. In DAC experiments, the amorphous XRD 
method is often utilized with a high energy monochromatic 
beam, in order to have a large coverage in momentum transfer 
Q  =  4πsinθ/λ [61, 180, 181] for sufficient real space resolu-
tion. Although the experimentally measured S(Q) is sensitive 
to changes of structure, it can be complicated to interpret. The 
pair distribution function g(r) provides a far more intuitive 
characterization of local structure, as it gives the probabil-
ity of finding one atom at a given distance from another. The 
resolution of this real-space structure is inversely proportional 

Figure 11.  Spotty diffraction patterns (common in high pressure experiments) are used to obtain single-crystal diffraction data for structure 
refinement. These diffraction patterns were collected from a β-Ge sample at 12 GPa, after heat treatment at 300 °C for 8 h. More than 15 
good quality crystallites are identified.
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to the highest Q. The high real-space resolution is required to 
accurately determine the bond lengths and angles that com-
prise the local structure.

The EDXRD method with polychromatic radiation has 
also been used for amorphous XRD studies [197, 201]. 
EDXRD data are collected at multiple 2θ angles to increase 
coverage in the reciprocal space for the accurate determina-
tion of the radial distribution function (e.g. [197]). The syn-
chrotron incident beam spectrum is simulated using a Monte 
Carlo approach and Compton scattering effects are based on 
theoretical predictions [202]. The advantage of this method 
is the excellent collimation, through which background scat-
tering from surrounding materials can be largely eliminated 
[203, 204]. This is a particularly useful technique for liquids 
with low scattering power (e.g. oxides and silicates). With 
the use of a soller slit system, diffraction from surrounding 
materials can be effectively minimized and ADXRD has been 
successfully applied to the study of liquid structures, utilizing 
the Paris–Edinburgh (PE) presses [161].

One challenging aspect in HP amorphous XRD is the weak 
scattering from non-crystalline materials. This has been partly 
overcome with the high brightness of the third generation syn-
chrotron sources. In addition, efforts have been made to prop-
erly subtract background signals [179, 182], and to reduce 
unwanted scattering by using partially perforated anvils  
[180, 181].

When studying non-crystalline structures, it is critical to 
pursue information on the individual partial-correlation func-
tions of the material of interest. By tuning incident x-ray 
energy, anomalous scattering can be used to amplify or sup-
press scattering from specific atomic species. Partial informa-
tion may also be obtained by combining neutron scattering 
data, where scattering intensity is often different from the 
monotonic Z-dependence of x-ray cross-sections [205].

3.2.7.  HP radial XRD.  When a sample is subjected to uniax-
ial compression in a DAC, radial XRD (R-XRD) technique 
may be applied with the primary x-ray beam in the radial 
direction, perpendicular to the DAC loading axis. R-XRD 
allows measurements of how the d-spacings vary with φ, 
the angle between scattering direction and the compression 
axis. The difference in d-spacings obtained from the φ  =  0° 
and φ  =  90° gives the deviatoric strain; ε  =  (d0°   −  d90°)/3dP, 
where dP  =  (d0°  +  2d90°)/3 is the d-spacing under the mean 
pressure σP and σP  =  (σ3  +  2σ1)/3 where σ3 and σ1 are axial 
and radial stresses, respectively. This data can be used to deter-
mine the deviatoric stress t  =  σ1  −  σ3. HP R-XRD provides 
useful information on sample stress, strain, deformation, and 
slip mechanism [206–209]. The dependence of d-spacings as 
a function of the angle provides information on strains under 
deviatoric stress conditions. The relative intensity at different 
angles reveals the preferred orientation of a polycrystalline 
sample. The inverse pole figure from such data can be used to 
determine sample deformation and slip mechanism (e.g. [90]).

In specially designed multianvil devices such as the defor-
mation DIA [210, 211] or rotational Drickamer apparatus 
[212], R-XRD is used to measure stresses in a sample under a 
controlled differential stress field during deformation. Strains 

can be measured using radiography, consequently permitting 
measurements of the stress–strain curves of bulk samples at 
HP [213, 214].

3.3.  HP x-ray spectroscopy

X-ray spectroscopy (XRS) can be used as a probe of elec-
tronic structure, such as band structures and bonding. In the 
last decade, significant developments in HP XRS have been 
made, thanks to the advent of the third generation synchrotron 
radiation. Many new HP XRS capabilities have been enabled 
and established at HP beamlines in the world. With emerging 
new synchrotron sources and upgrades of many existing third 
generation sources, together with developments in HP devices 
designed for HP XRS, we are entering a highly productive 
period for HP research using XRS. We discuss the following 
methods for HP studies: x-ray absorption near edge spectr
oscopy (XANES); extended x-ray absorption fine structure 
(EXAFS); x-ray magnetic circular dichroism (XMCD); and 
(resonant) x-ray emission spectroscopy (R-XES).

3.3.1.  HP x-ray absorption near-edge spectroscopy.  In x-ray 
absorption spectroscopy, incident x-rays are absorbed when 
their energy exceeds the excitation energy of deep-core elec-
trons of a specific element, causing a sharp edge-like absorp-
tion spectrum. XANES measures the energy dependence of 
the x-ray absorption coefficient to tens of eV above and below 
the edges for core-level electrons of an element of interest. 
It provides information on the symmetry-projected conduc-
tion band density of states that is related to the electronic 
properties, including oxidation state, crystal-field splitting, 
hybridization, charge transfer, and electronic ordering. HP 
XANES instrumentation is among the simplest in HP experi-
ments. Only the monochromator needs to be scanned across 
the specific energy edge of the element of interest. The mono-
chromatic x-rays are focused by mirrors upon the sample in 
DAC. The absorption is measured by monitoring the intensity 
change of either the transmission or the fluorescence signals, 
due to the absorption/reemission process, and is normalized 
relative to a reference intensity measured before the sample.

XANES was one of the first XRS techniques applied at 
HP [215], but was previously limited to a narrow range of 
energies due to the absorption and diffraction glitches by dia-
mond anvils. To greatly reduce the diamond in the beam path, 
counter bores (perforation) can be drilled in diamond anvils, 
as used in Bassett-type hydrothermal DAC for studying ions 
in aqueous solutions at moderate P-T conditions [53]. High 
quality XANES data (e.g. [216]) have been collected for trans
ition metals in DAC experiments with energies down to 5 keV. 
When studying absorption edges over 30 keV, using nanocrys-
talline diamond as an anvil material can avoid glitches result-
ing from the diffraction of the single-crystal diamond anvils 
[217, 218]. An alternative beam path through high-strength 
beryllium and boron gaskets are used in DAC [72, 219, 220].

An energy dispersive XANES technique has been devel-
oped [221], where a focused polychromatic beam (~5 µm) of 
extremely high flux passes through the sample, and is collected 
by an energy dispersive detector, capable of fast capturing the 
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XANES signals at micro-second level [142, 222]. The fast 
measurement and small beam size in this technique allows 
mapping of XANES images by scanning the sample position 
[223].

3.3.2.  HP extended x-ray absorption fine structure.  EXAFS 
measures the energy dependence of x-ray absorption coef-
ficient to typically 500–1000 eV above the edges. EXAFS 
arises from scattering of electrons in the environment of an 
atom, from which local structural information (interatomic 
distances and coordination) is obtained. Thus it provides ele-
ment-specific local structural information that is particularly 
valuable for amorphous materials or clusters in low concentra-
tions, where the XRD method is inapplicable.

Similar to HP XANES, perforated diamond anvils [152] 
or x-ray transparent gaskets [219] have been used to extend 
EXAFS measurements down to 5 keV. Diffraction caused by 
single-crystal diamonds is detrimental to the EXAFS spectr
oscopy and is now effectively avoided by using nanocrystalline 
diamond as an anvil material [217]. The use of nano crystal-
line diamond is particularly beneficial in EXAFS studies over 
30 keV. EXAFS has been used for studying the pressure effects 
on the structures of liquids [224] and amorphous solids [218, 
225]. Mobilio and Meneghini [226] provide a review of the 
variety of synchrotron-based x-ray techniques for studying 
amorphous materials, including techniques like anomalous 
scattering that can be used in conjunction with EXAFS.

3.3.3.  HP x-ray magnetic circular dichroism.  XMCD mea-
sures the difference of two x-ray absorption spectra (XAS) 
taken in a magnetic field, by the use of circularly polarized 
x-rays [59]. By taking one with left circularly polarized light 
and another with right circularly polarized light, the differ-
ence in the XMCD spectrum provides information on the 
magnetic properties of the atom, such as its spin and orbital 
magnetic moment. XMCD is therefore similar to conven-
tional optical MCD with visible light (magneto-optical Kerr 
effect) [227]. For HP applications, XMCD allows the use of 
high energy x-rays to penetrate the surrounding materials; 
it can be observed in both XANES and EXAFS. XMCD in 
XANES can measure spin-resolved conduction band densities 
of states, whereas XMCD in EXAFS provides local magnetic 
structural information. The sign of the dichroism gives the fer-
romagnetic coupling between atoms in materials [59, 228].

HP XMCD has been well developed for studying HP 
effects on ferro(ferri)-magnetic materials, yielding element 
and orbital-selective magnetization [16, 59, 229–231]. In par
ticular, XMCD is advantageous in cases where more than one 
magnetic element is present. The selectivity is beneficial for 
elucidating the role of selected electronic orbitals in mediat-
ing magnetic interactions. Neutron scattering techniques, on 
the other hand, probe the magnetic moment of all scattering 
atoms simultaneously. Similarly, SQUID magnetometry lacks 
element-specificity and is limited to lower pressures, due to 
restrictions in sample environment [232, 233].

3.3.4.  HP x-ray emission spectroscopy.  In XES experiments, 
deep-core electrons in the sample are excited by x-rays. The 

subsequent fluorescence radiation provides information on the 
filled electronic states of the sample, such as the core-level 
binding energies and the valence band density of states. It 
provides a unique probe for the diagnosis of pressure-induced 
magnetic spin collapse in transition elements [234, 235], and 
a general probe for valence band [103, 236]. The information 
provided by XES is complementary to that provided by XAS 
on unoccupied states. Moreover, the final state of the fluores-
cent process is a one-hole state, similar to the final state of a 
photoemission process.

HP XES data are typically obtained by a Rowland circle 
spectrometer with synchronized θ  −  2θ scan of the analyzer 
and detector (figure 12). The excitation x-ray source only 
needs to have higher energy than that of the fluorescent pho-
tons. Therefore, white, pink, or monochromatic x-rays can be 
used as the excitation source. The energies of the fluorescent 
photons are analyzed with a sub-eV energy resolution of the 
emission spectral line shape. Similar to HP XAS, the develop-
ment of x-ray transparent gaskets has extended the low end of 
the energy window down to 5 keV. HP XES measurements for 
all elements above Ti can now be performed by using proper 
analyzer crystals [237]. Multiple analyzers can be used to 
increase solid angle coverage in data collection and thus the 
signal level [238]. Recently, a short-distance spectrometer of 
large solid angle coverage has been developed, with which 
data collection time in HP XES is reduced from hours to only 
several minutes [239]. The XES technique has been extended 
to high P-T conditions with laser heated DAC techniques [138, 
240]. Examples of HP XES include the study of predicted 
high-spin/low-spin transitions in iron oxides and sulfides, such 
as (Mg,Fe)O and Fe2O3 [241–243], silicate bridgmanites [244, 
245], and silicate post-bridgmanite [246] to above 100 GPa.

Figure 12.  A Rowland circle spectrometer with synchronized 
θ  −  2θ scans of the analyzers and detector. A new design of a 
7-element analyzer system is shown, with a conical collection angle 
matching the opening of the diamond anvil cell. (Courtesy of Eric 
Rod.)
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3.3.5.  HP resonant x-ray emission spectroscopy and partial 
fluorescence yield.  Both resonant XES (RXES) and partial 
fluorescence yield (PFY) can be viewed as a combination of 
XES and XAS. Instead of collecting transmitted x-rays or total 
fluorescence yield as in XAS, emission spectra are measured 
at each step as the incident beam energy is changed or scanned 
across an absorption edge. Therefore, the emission signal 
can be collected in a 2D map of the incident energy versus 
emission energy. The projection to the incident and emission 
planes gives the PFY and RXES, respectively [11]. The energy 
resolution in XAS (using a transmission geometry or total flu-
orescence yield) is limited by the core-hole lifetime broaden-
ing. This broadening can be partly overcome by detuning the 
incident photon energy with respect to the resonance energy. 
Because the lifetime broadening of the final state is consider-
ably smaller than that of the core excited state, this resonant 
method significantly enhances footprints of electron states, 
and has a remarkable sharpening effect in projected spectra 
in PFY [11, 247]. For example, HP PYF spectra have allowed 
for resolving crystal-field splitting of Fe3+ in Fe2O3 [247]. For 
RXES, there may be no clear sharpening effect. Depending on 
the density of states, the band width of XES measured around 
an absorption edge can be either narrower or broader than that 
measured under non-resonant conditions [248]. HP RXES has 
been successfully used for quantitatively measuring the devel-
opment of multiple electronic configurations with differing 4f 
occupation numbers, revealing information on the delocaliza-
tion of the strongly correlated 4f electrons [249, 250]. Inter-
mediate spin state of Fe3O4 at 15–16 GPa has been identified 
by combining XMCD and RXES [56].

3.3.6.  HP x-ray fluorescence spectroscopy.  X-ray fluores-
cence spectroscopy (XFS) measures the solubility of mat
erials in fluids at HP [251, 252]. The method can be used for 
multi-element analytical probes and for studies of dissolution 
kinetics [253, 254]. In XFS experiments, the fluorescence sig-
nals (e.g. Kα, Kβ, or both) are collected by a solid-state energy 
dispersive detector. Currently, the detection limit for HP XFS 
is at a few ppm level for elements down to atomic number 22 
(Ti) and to a pressure of 10 GPa at high temperatures to at least 

1273 K [254–256]. A confocal geometry has been developed 
for minimizing unwanted background signals [257], further 
improving efficiency and consequently lowering the detection 
limit.

3.4.  HP inelastic x-ray scattering

Inelastic x-ray scattering (IXS) measures the dynamic struc-
ture factor S(E,Q), which is a function of momentum trans-
fer Q and energy transfer E. The dynamic structure factor 
contains information of all electronic excitations, including 
phonons, magnons, core-electron excitations, plasmons, the 
collective fluctuations of valence electrons, and Compton 
scattering (figure 13). Compared to other inelastic scatter-
ing techniques (inelastic neutron scattering, inelastic electron 
scattering, light Brillouin and Raman scattering), IXS is well 
suited for HP sample environments because of the penetrat-
ing power of hard x-rays, small focused beamsize from highly 
collimated synchrotron radiation, and large Q coverage (figure 
14). Contrary to Brillouin or Raman spectroscopy at visible 
wavelength, which is limited to the very small Q range near 
the Brillouin-zone center, the wave-vectors in hard x-rays 
IXS are large and can be tuned continuously across the whole 
Brillouin zone. Inelastic neutron scattering usually requires 
large sample sizes, making the measurements on pressurized 
samples particularly challenging with only a limited pressure 
range (<1.8 GPa [258],). In addition, neutron scattering has 
limited Q coverage at low energy-loss region. Inelastic elec-
tron scattering requires an ultrahigh vacuum, in direct contra-
diction to HP conditions.

The cross section in IXS is usually small, requiring broad 
angular acceptance for enough signals. However, HP samples 
are imbedded inside massive pressure vessels. The use of large 
angular acceptance causes overwhelming contributions from 
surrounding materials, often rendering HP IXS experiments 
unfeasible. Therefore, tight collimation in the detection side 
is essential, causing the count rate in HP IXS experiments to 
be several orders of magnitude less than those at ambient con-
ditions. Recently, this problem has been partially overcome 
by using an x-ray focusing optic (e.g. x-ray polycapillary, 

Figure 13.  Approximate energy scales of different elementary excitations in condensed matter systems.
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figure 9) [162]. The focus provides the desired depth resolu-
tion, significantly discriminating sample signals from those 
arising from surrounding materials.

In the last decade, several methods have been developed 
for HP studies: non-resonant inelastic x-ray scattering or x-ray 
Raman scattering, resonant IXS (RIXS), nuclear resonant IXS 
(NRIXS), nuclear forward scattering (NFS), and Compton 
scattering (CS). Depending on the energy resolution required, 
different x-ray spectrometers have been constructed: low 
energy resolution IXS (LERIX) with a typical energy resolu-
tion of 1 eV, medium energy resolution IXS (MERIX) with 
30–300 meV, and high energy resolution IXS (HERIX) with 
0.3–3 meV.

3.4.1.  HP non-resonant inelastic x-ray scattering.  In non-
resonant IXS (NIXS), high energy x-rays excite core electrons 
to an unoccupied state [259, 260]. It is analogous to the opti-
cal Raman scattering in terms of the excitation process, thus 
sometimes referred to as x-ray Raman scattering. The differ-
ence lies in the exciting energy that is in the x-ray regime, 
with corresponding excitations from core electrons. The use 
of high energy x-rays provides the penetrating power and 
removes the constraints of soft x-rays or electron beams in 
the studies of electronic structure of the material, making the 
NIXS a well-suited technique for studying electronic proper-
ties at HP using HP devices.

Near core-electron absorption edge features, for example, 
reveal information on chemical bonding. Such information is 
particularly pronounced and important for light elements, but 
has been inaccessible for HP studies as the pressure vessel com-
pletely blocks the soft x-rays or electron beams. With NIXS, the 
high-energy incident x-ray penetrates the pressure vessel and 
reaches the sample. The scattered photon transfers a portion of 
energy corresponding to the K-edge of the low-Z sample, but 
can still exit the vessel to be registered on the analyzer-detector 
system. Inelastic K-edge scattering spectra of second-row ele-
ments from Li (56 eV) to O (543 eV) at HP opened up a wide 

new field of near K-edge spectroscopy of the second row ele-
ments, such as graphite [72, 261], boron [262, 263], hydrocar-
bons [264], oxygen in glasses (SiO2, B2O3, GeO2, MgSiO3) 
[265–267], and H2O [268, 269]. Because the features in NIXS 
are sensitive to local ‘short range’ structure, the technique has 
been particularly useful in revealing structural changes in non-
crystalline materials at HP. Pressure has dramatic effects on the 
energy and dispersion of all electronic bands. HP NIXS probes 
valence and conduction electronic structures at low energies up 
to a few tens of eV from the elastic line, and has been success-
fully applied to study Fermi surface [270], excitons [271, 272], 
plasmons [273, 274], and their dispersions at HP, by scanning 
both energy E and momentum transfer Q to obtain the dielectric 
function ε(E, Q) and the dynamic structure factor S(E, Q). 
Depending on the resolution required, two kinds of instruments 
are used: LERIX and MERIX. In general, LERIX setup is used 
in many HP NIXS experiments; while MERIX is more com-
monly used in resonant IXS.

3.4.2.  HP resonant inelastic x-ray scattering.  When the 
energy of the incident x-rays is tuned to resonate with one 
of x-ray absorption edges of the system, it is the so-called 
resonant inelastic x-ray scattering (RIXS) [275]. The reso-
nance can greatly sharpen the IXS features and enhance the 
inelastic scattering cross section by orders of magnitude [11, 
275]. RIXS in transition-metal and rare-earth systems gives 
important information on the electronic states, such as the 
intra-atomic multiplet coupling, electron correlation, and 
inter-atomic hybridization. Unusual phase transitions driven 
by electron correlation effects occur in many transition metals 
and their compounds at HP. The nature of these transitions, 
including the relationships between the crystal and electronic 
structures and the role of magnetic moment and order, is 
an area of active study [11, 249, 275–277]. For the incident 
energy at the main absorption edge, RIXS is dominated by 
charge excitations. In the pre-edge region, d–d excitations and 
orbital transitions are emphasized.

Both LERIX and MERIX instruments can be used for 
HP RIXS studies [11], depending on the energy resolution 
required for the subject of study. Because the incident energy 
is chosen by the absorption edges of the system, keeping high 
energy resolution in RIXS is not a trivial task. Significant 
efforts have been made to improve the energy resolution to 
probe fine electronic structures, including Bragg angle close 
to back-scattering geometry and the use of diced crystals cou-
pled with an area detector [275, 278]. For RIXS using MERIX 
instruments, only a limited number of suitable analyzers have 
been established [279].

3.4.3.  HP meV resolved inelastic x-ray scattering.  Explora-
tion of phonon dispersion used to be the domain of inelastic 
neutron scattering (INS). Although it has been long recognized 
that x-rays may also be used to probe lattice dynamics, it was 
not until the arrival of the third generation synchrotron that the 
meV resolved IXS (also referred as HERIX) was established 
for measuring phonon dispersion, first at HASYLAB [280], 
Germany, and then at ESRF [281], APS [282], and Spring-8 
[283]. The HERIX instrument is designed to study the phonon 

Figure 14.  Energy ranges and wavevector coverages to measure the 
dynamic structure factor with various techniques.
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dispersion in crystals and the collective atomic excitations 
in disordered systems. Again, the penetration ability of high 
x-ray energies and the small beam make this technique suit-
able for HP studies.

HERIX has been applied to studying the HP elasticity 
anisotropy of f-electron metals [284, 285]. Sound velocities 
of materials at HP to over 1 Mbar have been measured [12, 
286–288] using HERIX. With single-crystal samples, com-
plete phonon dispersions in the Brillouin zone can be mapped 
by HERIX at HP [101, 289, 290]. However, lattice dynami-
cal data at HP are still limited, largely due to constraints by 
the strict requirements of sample quality, hydrostaticity, and, 
to some extent, beam time availability. Recently, a compact 
laser heated DAC has been integrated with the HERIX instru-
ment [291]. Sound velocities of iron and iron alloys have been 
measured at HP-HT conditions [292–295].

Most HERIX experiments remain flux limited. Special 
effort must be made to both maximize the transmitted radia-
tion and minimize backgrounds. Air scatter can be a signifi-
cant background at low momentum transfers (e.g.  <20 nm−1, 
and especially  <5 nm−1), while diamonds, gaskets, or pres
sure medium can contribute both inelastic (phonons) and elas-
tic scattering. Often, single-crystal windows (e.g. diamond 
anvils) produce only a well-defined phonon background.

3.4.4.  HP nuclear resonant inelastic x-ray scattering.  In 
nuclear resonant IXS (NRIXS), incident x-rays of meV reso-
lution are tuned near the exceedingly narrow nuclear resonant 
line (at neV level). By using time discrimination electronics, 
the delayed signals caused by the narrow nuclear absorption 
provide NRIXS data [154] (figure 15). The narrow meV band-
width of x-rays is in a range comparable to that of vibrational 
excitations. Thus, nuclear resonant scattering yields element 
specific information on lattice dynamics, such as the partial 
phonon density of states (DOS), through an inelastic scatter-
ing process. In principle, the DOS provides constraints on 
vibrational dynamic, thermodynamic, and elastic information 
of a material, including vibrational kinetic energy, zero-point 
vibrational energy, vibrational entropy, vibrational heat capac-
ity, Debye temperature, Grüneisen parameter, thermal expan-
sivity, longitudinal velocity, shear velocities, bulk modulus, 
and shear modulus.

NRIXS measurements were first carried out on 57Fe in its 
bcc iron at ambient conditions [296, 297]. The NRIXS tech-
nique has been extended to HP and obtained the DOS of ε-Fe 
up to over 1 Mbar [63, 155] and as a function of pressure 
and temperature with resistively heating and laser-heating 
techniques [138, 298, 299]. The measurement of Debye sound 
velocity [300, 301] distinguishes compression and shear wave 
velocities as well as their temperature and pressure depend
ence. This technique also allows determination of anisotropy 
of sound velocities and mode Grüneisen constants [300, 302].

3.4.5.  HP nuclear forward scattering.  In nuclear forward 
scattering (NFS), synchrotron x-rays are used to excite the 
resonant nuclei coherently and the re-emitted radiation is 
recorded by the avalanche photo-diode detector in the forward 
direction [154, 303] (figure 15). The timing circuit measures 

the time elapsed between excitation and re-emission and 
removes prompt events. The delayed forward scattering mea-
sures the Mössbauer effect in time domain; hyperfine split-
tings are reconstructed from the time-dependent intensity. 
Thus NFS is also called synchrotron Mössbauer spectroscopy.

Because of the high brilliance and highly focused beam, 
NFS is well suited for, and has been extensively used in, HP 
studies. The NFS hyperfine signals are very sensitive to inter-
nal magnetic fields, electric field gradients, and isomer shifts 
[304–306], and has been used to study HP behavior of mat
erials at megabar pressures, such as magnetic collapse [173, 
244, 241, 242], site occupancy [245, 307], and valence and spin 
state [308–311]. Fast NFS experiments have been performed 
to determine the HP melting temperatures of iron [312], by 
measuring the Lamb–Mössbauer factor which describes the 
probability of recoilless absorption.

3.4.6.  HP Compton scattering.  Compton scattering is an 
inelastic scattering at high momentum transfer that probes 
electron momentum distributions. Using intense high energy 
x-ray source, high resolution Compton profiles can be mea-
sured. The challenge at HP is mainly related to the elimina-
tion of the background scattering from surrounding materials, 
such as the gasket and anvils. In Compton scattering measure-
ments, the background scattering often overlaps with the spec-
tral region of actual interest.

There have been few reports on Compton scattering stud-
ies under HP. The availability of intense synchrotron radiation 
sources, particularly the high brightness at very high energies 
(~50 keV), together with the development of high-resolution 
spectrometers, are opening up new classes of Compton scat-
tering experiments on small samples at HP. The method 
has been applied to elemental solids such as Na, Li, and Si 
[313–315].

3.5.  HP x-ray imaging

From the beginning of HP-SR experiments, HP x-ray imaging 
techniques have been used for locating HP sample position 

Figure 15.  Photograph of an experimental setup for NRIXS 
at 16-ID-D HPCAT: a panoramic DAC is surrounded by three 
avalanching photodiode (APD) detectors placed very close to the 
sample position.
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and defining sample shape [316, 317]. Now, a variety of HP 
x-ray imaging techniques have been developed for various 
imaging purposes, such as HP radiography, HP tomography, 
using the full-field imaging method or the position scanning 
method. Recently, HP coherent x-ray diffraction has been 
developed for nano-size materials. X-ray topography provides 
information of internal strain and defects of crystals. Although 
there is no HP topography work reported so far, x-ray topog-
raphy images are used for selecting diamond anvils [318] and 
improving the synthetic procedures in the CVD diamond crys-
tal growth process [319].

3.5.1.  HP x-ray radiography.  HP radiography provides den-
sity contrast information through which the sample configu-
ration inside the pressure chamber can be monitored. Often, 
because of the small beam in HP synchrotron experiments, 
radiography images are obtained by scanning sample posi-
tions. The position scanning radiography is used in almost 
all HP synchrotron experiments and provides information on 
sample allocation, sample configuration, anvil deformation 
etc [45]. By selecting proper monochromatic beams, absorp-
tion intensity contrast may be used for density determination 
for amorphous and liquid materials [77, 320, 321].

It should be noted that the position scanning imaging can be 
applied in any x-ray measurements. For example, by fast XAS 
measurements, images in chemical compositions and valence 
states may be obtained [223]. With increased brilliance and 
detection efficiency, many other measurements, such as XRD, 
XES, NFS (Mössbauer), may be used for mapping samples, 
providing images based on information of structure, valence 
state, spin, site occupancy, etc. HP scanning imaging has great 
potential for detailed information not only from a single spot 
but from the entire sample. The image resolution in the posi-
tion scanning method is limited by the beam size.

HP radiography can also be obtained by the full-field 
method, in which the incident beam is large, relative to the 
sample size. Intensities of the transmitted x-rays are recorded 
by a camera and monitored by a phosphor screen which con-
verts x-ray contrast into visible light. The full-field radiogra-
phy is fast, allowing for efficient recording dynamic processes 
in HP experiments. For example, a probing sphere can be in 
situ monitored for viscosity measurements of liquids at HP 
[322–324]. Full-field radiography is often used in HP ultra-
sonic measurements for sample dimensions. X-ray focusing 
optics (e.g. zone-plate) may be used as an ‘objective lens’ 
similar to an optical microscope. With this, the resolution in 
full-field imaging can be increased significantly at the cost 
of the field-of-view. Such a transmission x-ray microscope 
(TXM) has a typical resolution of ~20–30 nm with a field-of-
view of about 15 µm in diameter [325, 326].

3.5.2.  HP x-ray computed tomography.  With the development 
of micro- and nano-beam technology and intense synchrotron 
high energy x-ray sources, it is now possible for x-ray com-
puted tomography (CT) to provide images with high spatial 
and temporal resolutions in three dimensions and as a function 
of time (4D). X-ray CT has become a powerful tool for the real-
time characterization of microstructural and morphological 

evolution under HP. Laboratory-based x-ray CT systems are 
limited to relatively low x-ray energies and lengthy (1–2 h) 
image acquisition times. Third-generation synchrotron light 
sources afford unprecedented x-ray flux; by coupling with a 
high-speed camera, we can obtain x-ray radiographs at mil-
lisecond level and collect tomographic data in ~1 s. Add-
ing a sample compression cell makes it possible to study the 
dynamic deformation of materials in situ at a 10−2 strain rate.

One of the most important variables under pressure is the 
volume or density. Unlike the Bragg peaks of crystals that 
measure unit cell volume directly, amorphous diffraction 
peaks only give a rough estimate of the volume [327]. HP 
x-ray CT can provide direct volume determinations with tens 
of nanometer resolution, and has been successfully used to 
determine the effect of pressure on the volume change [325, 
327, 328].

X-ray CT is capable of non-destructive imaging with a 
30 nm spatial resolution allowing the 3D tomographic recon-
struction of samples with very small features. This has been 
recently demonstrated in the molten iron distribution in the 
3D reconstructions of samples prepared at varying pressures 
and temperatures using a laser-heated DAC [329]. In previous 
measurements, the determination of dihedral angles, which 
describe the ratio of the solid–liquid interfacial energy and 
the solid–solid interfacial energy, using transmission electron 
microscopy or backscattered electron microscopy may not 
generate satisfactory statistics, especially for HP conditions. 
Furthermore, when the solid phase is anisotropic, the inter-
facial energy may vary with crystallographic direction, lead-
ing to multiple dihedral angles, for which 2D imaging cannot 
account. With the x-ray CT, the 3D imaging shows that, as 
the pressure increases from 25 to 64 GPa, the iron distribution 
changes from isolated pockets to an interconnected network 
(figure 16) [326], which has important implications in the for-
mation of the Earth’s core.

3.5.3.  HP x-ray phase contrast imaging.  In x-ray radiography 
or tomography, imaging relies on the absorption (or density) 
contrast. In phase contrast imaging (PCI), it records variations 
in the radiation phase [330, 331]. Variations in attenuation 
(thickness, density) and the x-ray refractive index of a sample 
lead to a change in the shape of an x-ray wavefront passing 
through the sample. By recording the intensity of the wave-
front at a sufficient distance from the sample, intensity varia-
tions due to sharp changes in attenuation and refractive index 
in the sample can be detected. At grain boundaries, the sharp 
variations in refractive index can lead to strong phase contrast, 
even with polychromatic radiation [330]. PCI is especially 
useful in imaging weakly scattering materials, where the den-
sity contrast may also be weak. Subtle phase retrieval may be 
obtained by using x-rays of differing energies [332].

The use of PCI in HP studies is only beginning to be rec-
ognized. With fast detectors, fast PCI measurements have 
been used for studying the dynamic response of materials at 
extreme conditions. Dynamic phenomena at ns to µs time-
scales can be recorded with 3 µm spatial resolution [13, 14]. 
PCI has been used to study the immiscibility of two or more 
liquids in a system [333] (figure 17).
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3.5.4.  HP coherent imaging.  Coherent diffraction imaging 
(CDI) has been a subject of considerable research over the 
past decade [334–336]. The CDI technique allows for 2D or 
3D reconstructions of nanoscale structure images. In CDI, a 
highly coherent x-ray beam is scattered by the object and pro-
duces a diffraction pattern downstream. This recorded pattern 
is then used to reconstruct an image via an iterative feedback 
algorithm, converting the reciprocal space pattern into a real 
space image. As coherent x-rays pass through a distorted crys-
tal, both the scattering intensity and phase will be affected. 
CDI is therefore sensitive to the internal strain distribution of 
individual nanometer-sized single crystals [19, 336].

CDI has been used for morphology and 3D strain distri-
butions of HP samples [17–19] (figure 18). Compared to the 
state-of-the-art XRD technique, which provides internal strain 
distribution along the beam penetration direction with about 1 
µm point-to-point spatial resolution and a strain sensitivity of 
10−3 [337], CDI provides superior spatial resolution (<30 nm) 
and strain sensitivity (1  ×  10−4) [19].

Another coherent based imaging technique is x-ray photon 
correlation spectroscopy (XPCS) [338], which has become 
a powerful probe of materials dynamics. XPCS is the x-ray 
analog of dynamical light scattering and measures speckle 
pattern by the scattered coherent light originating from a 
material with some inhomogeneities. When the arrangement 
of the system changes over time, the time dependence of the 
speckle pattern in XPCS can be used for studying the dynam-
ics of the system [339]. XPCS can be well integrated with 
HP devices to address the dynamics of HP liquids/fluids, HP 
melting, HP glass transition, etc. No HP XPCS work has been 
reported so far.

4.  High-pressure research using synchrotron x-rays

With the advancement of powerful microsampling synchrotron 
probes, materials’ structural, electronic, magnetic, mechani-
cal, and phonon properties have been widely studied under 
HP in the past decade. Matter under extreme conditions has 
become a forefront area of research activities across the sci-
entific disciplines, including physics, chemistry, materials sci-
ence, earth and planetary sciences, and biology. Some studies 

deal with old quests that have finally become within our grasp; 
some are surprising, novel phenomena that challenge our con-
ventional wisdom; some have big societal impacts in various 
fields. In this section, we review the progresses in HP scien-
tific studies using synchrotron x-rays in recent years.

4.1.  Structure of materials

The ability of pressure to change inter-atomic distances 
strongly leads to a variety of pressure-induced structural and 
electronic changes, resulting in intriguing structural forms 
at HP. Determining the atomic arrangement is an essential 
prerequisite for understanding the effect of compression or 
decompression on materials and their structure-property cor-
relations for predictive models of novel materials and new 
applications.

4.1.1.  HP crystallography.  Crystallography deals with the 
arrangement of atoms in crystalline solids. It has been the 

Figure 16.  Sub-µm resolution tomography images showing the 3D distributions of iron alloy melt in bridgmanite. Samples were synthesized 
in laser heated diamond anvil cells at various pressures. (Modified with permission from [326]. Copyright 2013 Nature Publishing Group.)

Figure 17.  A phase contrast image of carbonate and silicate melts 
using a polychromatic x-ray beam, which shows two immiscible 
melts at high pressure. (Courtesy of Yoshio Kono.)
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primary field of HP studies using synchrotron radiation, 
and will likely remain so in future because of its key role 
in understanding the effects of compression on structures. 
In early years after the invention of the DAC, initial experi-
ments were successfully used for crystallographic structural 
determinations at HP [340–344]. In the last two decades, with 
the greatly improved x-ray flux and small probe size from SR 
and developments in HP technology, HP crystallography has 
undergone a significant surge, not only in the number of stud-
ies carried out by the fast growing community, but also in the 
ability to determine the detailed crystal structures of materials 
at extreme conditions, including surprising novel structures at 
HP. An example is the complexity of structure revealed at HP. 
Contrary to the conventional understanding that the crystal 
structures at HP becomes increasingly simple like arrays of 
closely packed balls, HP increases the interaction of the inner 
electrons, and atoms may become irregularly-shaped and non-
spherical, resulting in very complicated crystal structures and 
very large unit cells [345, 346] (figure 19). The striking struc-
tural complexity is found to exist in many elements, including 
the widespread existence of incommensurate structures at HP 
[347–350].

A comprehensive review by McMahon and Nelmes [351] 
categorizes the complex structures into four types: incom-
mensurate composite structures, incommensurate modulated 
structure, modulated layer structures, and other complex 
structures. Incommensurate composite structures comprise 
of two interpenetrating components, a ‘host’ and a ‘guest’, 
which are incommensurate with each other along one or more 
axes, e.g. in Ba [352], Sr [353], Rb [354], Sb [355, 356], and 
Sc [357]. Incommensurate modulated structure can be viewed 
as a basic structure with the atoms displaced by a modula-
tion wave, which is incommensurate with the basic unit cells. 
Examples of these types of structures include Te, Se, S, I, and 
Br [349, 350, 358–360]. Modulated layer structures consist 
of various different stacking sequences of similar 8-atom and 

10 atom layers at HP, such as in Li [361], Cs [362], Rb [363], 
and Ga [364]. These complex structures are not only widely 
observed, but are stable over wide ranges of P-T conditions.

The development of HP single-crystal XRD [102, 185, 365, 
366] has even enabled detailed structural studies of complex 
phases for weakly scattering materials and at pressures above 
200 GPa. Besides the information on atomic arrangement, 

Figure 18.  A large opening panoramic diamond anvil cell for collecting coherent diffraction images at high pressure. The left inset shows 
a scanning-electron microscopy (SEM) image of gold nanoparticles distributed on a silicon substrate. The right inset displays the coherent 
diffraction image of phase shift distribution pasted on the 30% isosurface plot. (Modified with permission from [19]. Copyright 2013 
Nature Publishing Group.)

Figure 19.  Phase diagram of lithium (red) and sodium (blue). 
Both lithium and sodium display steep melt-downs, with melting 
temperatures even below room temperature at 50 GPa and 110 GPa, 
respectively. The underlying solids have complex structures with 
large unit cells. (Courtesy of O Degtyareva (modified).)
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electron density analysis under pressure has recently been 
performed [102, 103, 367, 368]. For instance, the change 
in electron density distributions has been monitored across 
a spin transition of Fe2+ in (Mg,Fe)O (figure 20) [369]. In 
the deformation density maps (figures 20(c)–(f)), the positive 
deformation is shown in a blue color and the negative in grey 
color. In Fe2+, there are five d-orbitals, with three t2g (dxy, dyz, 
dzx) and two eg (dx2−y2, dz2) orbitals shown in figure 20(g). A 
high (low) spin state of Fe2+ would mean positive (negative) 
deformation values on the axis directions and negative (posi-
tive) in the diagonal directions. Figure  20(c) shows a clear 
high spin state as indicated by the positive electron density in 
the axis direction and negative in the diagonal directions of 
the basal plane, corresponding to the t2g orbitals. Both positive 
and negative deformation densities decrease at 48 GPa (figure 
20(d)). At 53 GPa, the inverse signs are observed, and become 
more obvious at 69 GPa (figures 20(e) and (f)), indicating the 
high spin to low spin transition.

In many cases, our structural knowledge at HP is based on 
limited information from powder x-ray diffraction, because it 
is often difficult to preserve a single-crystal sample at HP due 
to phase transitions and/or non-hydrostaticity. HP multigrain 
crystallography has been recently developed for single-crystal 
structure determination [152], which is particularly useful for 
studying the structural properties of phases that are not recov-
erable at ambient condition. For instance, structure refinement 
has been made for (Mg,Fe)SiO3 post-bridgmanite at pressures 

above one megabar [167]; electron density distribution of  
β-Ge has been determined at 12 GPa [103, 370]. With the 
precise structural determination enabled by the multigrain 
approach, it is anticipated that many previously determined 
HP structures will be revisited with the technique. For exam-
ple, a new hexagonally structured (Mg,Fe)SiO3 phase has 
been discovered at a pressure range of 95–108 GPa [195], 
suggesting that the lower mantle may contain previously uni-
dentified major phases; dislocations in grains of MgGeO3 
post-bridgmanite has been determined at 90 GPa [371]; the 
crystal structure of seifertite (SiO2) as a minor phase in a sam-
ple at 129 GPa has been refined [168].

4.1.2.  Non-crystalline materials.  Due to the lack of long-
range periodicity, atoms in non-crystalline materials have 
more degrees of freedom, with richer physics and chemis-
try under HP [372–379]. Structural determination for non-
crystalline materials has been challenging. The observation 
of ‘halos’ in XRD from liquids and glasses mean that non-
crystalline systems possess a distinct local structure. The pair 
distribution function, extracted from XRD or EXAFS, is often 
used for structural description [60, 179, 196, 380] and directly 
compared to theory and simulation results. The dynamical 
x-ray structure factor, often obtained from IXS and nuclear 
scattering, provides information on collective excitations in 
liquids and glasses [381]. X-ray imaging enables the measure-
ment of material properties including density [77, 327, 328] 

Figure 20.  Electron density distributions of a ferropericlase sample at high pressures. (a) (Mg0.47, Fe0.53)O at 69 GPa, illustrated in the form 
of thermal ellipsoids at 50% probability. Fe/Mg: light green, O: light red. (b) The deformation density map of (Mg0.47, Fe0.53)O at 69 GPa. 
The positive and negative electron densities are illustrated by blue and gray colors, respectively. The contour is set at 0.5 Å−3. (c)–(f) The 
deformation density maps at a local position at pressures of 42, 48, 53 and 69 GPa, respectively. (g) Illustrated d-orbitals of Fe2+.

Rep. Prog. Phys. 80 (2017) 016101



Review

23

and viscosity (e.g. [159]) in liquids. HP XRS allows direct 
probing of the chemical bonding changes of light elements in 
non-crystalline materials [268, 382]. Relatively speaking, HP 
XRD remains a primary technique for studying the structural 
evolution of non-crystalline materials [98, 121, 199, 205, 263, 
265, 320, 383, 384–388], pressure-induced amorphization or 
melting [346, 389–398], and pressure-induced crystallization 
[58, 346, 392, 396, 399–401].

HP x-ray studies on non-crystalline materials started in 
the early 1970s on liquid sodium, up to 5 GPa [402]. Since 
the late 1980s, SR x-rays have been widely used for pressure 
induced structural changes in Se, Ga, and Bi liquids [197] and 
SiO2 glass [201] using EDXRD, and coordination changes in 
GeO2 glass [225] using EXAFS. Subsequently, ADXRD has 
been used for studying the structure factors of HP fluids [182] 
and amorphous iron [403] in the DAC. Coupled with laser 
heated DAC, the structure of liquid iron has been measured up 
to 58 GPa [404]. Recently, XRD measurements with a laser 
heated DAC provided evidence of a liquid–liquid transition in 
cerium [405].

Experiments on glassy and amorphous materials have 
shown that the amorphous–amorphous transition may occur in 
simple systems; for example, in H2O [406], SiO2 [60], GeO2 
[61, 205, 320], and metallic glasses [216, 388]. The ability to 
induce amorphous transitions with pressure, especially those 
that can be recovered to ambient conditions, provides a way of 
tuning materials properties that are likely unobtainable using 
any other method. For example, an unusual thermally induced 
densification, as large as 16%, is observed in a GeO2 glass 
at 5.5 GPa [121]. The XRD data show that the large thermal 
densification is associated with a 4- to 6-fold coordination 
increase of Ge. In addition, identifying second order and other 
gradual transitions in disordered materials is important both 
for materials science and technological advancements.

The concept of polyamorphism (i.e. multiple structures of 
amorphous materials with the same composition separated by 
a first order phase transition) remains a fundamentally impor-
tant and unresolved phenomenon [407]. A wealth of indirect 
evidence for such transitions has already been established in 
H2O [406], SiO2 [201, 408, 409], GeO2 [61, 225, 410], Si 
[199, 411, 412], I [413], Se [413, 414], S [414, 415], P [198, 
416], Ce [405]. However, unambiguous evidence for liquid–
liquid transition has yet to be presented in the liquid state for 
any system.

Integration of multiple techniques is often essential for 
comprehensive studies of the relationship between structure 
and properties such as density, ultrasound velocity, viscos-
ity, electric and thermal conductivity [159, 417]. Figure  21 
shows an example of viscosity and structure data of KCl and 
NaCl liquids up to 7.3 GPa [324]. The viscosity of liquid KCl 
increases rapidly at 1.5–2.2 GPa, above which it remains vir-
tually constant. Structural data of KCl liquid also showed a 
pronounced change. In contrast, no anomaly in viscosity and 
structure is observed for NaCl liquid under HP. These observa-
tions suggest that viscosities of KCl and NaCl liquids strongly 
correlate with the structure. The viscosity anomaly in liquid 
KCl is found to be at pressures close to those of the B1-B2 
transition in solid KCl.

4.1.3. The ordering state in materials.  In crystalline materials, 
short-range order (SRO) is generally correlated with long-
range-order (LRO). For example, a perfect crystalline mat
erial displays a high degree of order in both SRO and LRO. 
Existence of defects, such as vacancies and stacking faults, 
decreases the coherence of crystal lattice, lowering the degree 
of order in both SRO and LRO. Some materials may show 
disorder in a particular sublattice, displaying crystallographic 
disorder in certain directions [418, 419]. If we consider quasi
periodicity as a LRO, quasicrystals can be viewed as hav-
ing LRO as much as crystals. On the other hand, amorphous 
materials often show a high degree of SRO, especially when 
strong interatomic interactions are present, but lack LRO. 
Some amorphous materials may display medium-range order 
(MRO) at the nanometer scale [201, 403, 420]. Thus, in amor-
phous materials SRO is not directly correlated with LRO.

Recently, the ordering state of materials has been extended 
by expanding into regions where amorphous clusters can form a 
periodic lattice or where a glass possesses a hidden single-crystal 
order. Wang et al [421] showed that C60 molecules from a crystal-
line solvated fullerene phase undergo an order-to-disorder trans
ition under HP but keep their translational symmetry (figure 22). 
It is remarkable that a material can still possess long-range order 
even though its fundamental building blocks are disordered. In 
contrast, HP experiments on metallic glasses revealed a glassy 
state possessing a topological LRO, which is referred to as a per-
fect glass state [200]. These studies open the door for exploring 
materials with various degrees of ordering state, with potential 
for a variety of physical and chemical properties.

Figure 21.  A falling sphere technique revealed an anomaly in the 
viscosity of liquid KCl at around 2 GPa, also associated with a 
pronounced change signified by the ratio of the nearest- and the 
second-neighbor distances. The results suggest that the viscosity 
anomaly in liquid KCl strongly correlates with structural changes. 
The inset images show the falling sphere recorded by fast x-ray 
imaging. (Modified with permission from [324]. Copyright 2013 by 
the American Physical Society.)
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4.2.  Equations of state

Equation of state (EOS) describes the relationship between 
state variables (pressure, volume, temperature, etc), displaying 
the state of matter under a given set of physical conditions. The 
application of pressure for EOS studies is of primary importance 
because the complementary variable to pressure is volume, 
whereas that to temperature is entropy. In theoretical simula-
tions, it is comparatively easier to calculate the free energy of 
materials with different volumes, than to deal with all different 
sources of entropy. Thus, experimental data of pressure-volume 
EOS is widely used for validations of theoretical models.

The Birch–Murnaghan EOS is a type widely used in HP 
studies. It is based on finite strain theories using the Eulerian 
strain measure, with its third-order form as:
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where X  =  (V/V0)1/3 is the linear compression; subscript 0 
denotes the parameter at ambient pressure; KT0 and ′KT0 are 
bulk modulus and its first pressure derivative, respectively. 
For materials under very strong compression, EOS based on 
exponential repulsive potentials, such as that of Vinet [422],  
are superior to finite strain theories. The Vinet EOS is 
expressed by:
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A variety of other equations of state that are applicable to vari-
ous classes of materials have been proposed (e.g. [423, 424]). 
To describe thermal equations of state, several forms are pro-
posed, including high temperature Birch–Murnaghan EOS, 
thermal pressure EOS, and lattice dynamics model (see [425] 
and references therein).

With the advances in SR-HP techniques, there is a grow-
ing amount of published EOS data. At the same time, the high 
volume of experimental data shows some discrepancies in lit-
erature primarily due to pressure scales and possible different 
sample environment, e.g. non-hydrostatic stresses. XRD data 

indicate that the pressure derived from different scales varies as 
widely as 7% at 100 GPa and room temperature (e.g [82]). The 
discrepancy could be even larger at high temperatures. Because 
the primary scales are still largely based on shock compression 
data, which carry a 5–7% uncertainty, an internally consistent 
approach has been used to establish a set of calibrates that are 
self-consistent with each other [82, 97, 426]. This approach is an 
important and necessary step towards a solution in dealing with 
large volumes of data. With the development of even smaller 
x-ray probes and efficient detection techniques, combinatorial 
studies for a large set of materials may be applied in a single 
sample chamber for internally consistent EOS data. Ultimately 
this must rely on the establishment of an absolute pressure scale 
based on self-consistent EOS measurements by simultaneous 
XRD and acoustic measurements (see section 2.4).

Ultrahigh pressures achieved successful determinations of 
EOS even at the early stages of synchrotron use; e.g. iron to 3 
Mbar [33] and hydrogen to over 1 Mbar [80]. Large amounts 
of data on thermal EOS have been obtained using resistively 
heated DAC (e.g. [97, 125]) or LVPs (e.g. [427]). Although 
laser heated DAC can reach much higher temperature condi-
tions, it remains experimentally challenging for thermal EOS 
studies (see section 2.7.4). A uniformly heated volume, much 
larger than the probing x-ray beam size, is required for reli-
able thermal EOS measurements.

Recently available fast x-ray detectors together with the 
high brightness of synchrotron beams allow fast data collec-
tion at synchrotron facilities. Applying this to EOS studies, 
thousands of data points can be collected quickly, as pressure 
or temperature is changed [110] (figure 23). Since pressure 
can be determined by including a few internal standards, high 
precision EOS data can be obtained.

4.3.  Phase relations

The compression energy is comparable to typical bond 
strength. For example, for pressures below 10 GPa, the 
compression energy is comparable to hydrogen bonds; at 
P  >  100 GPa, it is large enough to break a number of chemical 

Figure 22.  C60 can still possess long-range order even though its fundamental building blocks are disordered. (left) The pristine structure 
of the C60 cages which is elastic below ~30 GPa. (right) Above 30 GPa, many carbon–carbon bonds break down, causing locally disordered 
building blocks, while the long range order still holds. (Modified with permission from [421]. Copyright 2012 American Association for the 
Advancement of Science.)

Rep. Prog. Phys. 80 (2017) 016101



Review

25

bonds, leading to a variety of pressure-induced structural and 
electronic phase transitions. Synchrotron x-ray probes have 
been widely used for phase relation studies.

4.3.1.  Phase transitions.  HP studies with x-rays contribute 
greatly to our knowledge of the phase diagrams of materials, 
as demonstrated in several books [428–430]. Atomic coordi-
nation and the structures of materials are governed, to a first 
approximation, by the geometric relation of ‘hard-sphere’ 
atomic radii. This geometrical concept has been one of the 
guidelines in searching for possible HP polymorphs, based 
on the low-P analogs of the next row elements on the Peri-
odic Table [431]. For example, the classic B1-B2 transition 
in NaCl requires that the ratios of r(Na)/r(Cl) reduce below 
0.73; this can only occur if r(Cl) decreases relative to r(Na) 
at high pressures [432]. This was later verified in all alkali 
halides. Another example is silicate materials. The small sili-
con fits in the site, surrounded by four large oxygen anions, 
at relatively low pressures. However, as pressure increases 
the ionic radius ratio of silicon and oxygen increases with 
the high compressibility of the oxygen anion relative to sili-
con, resulting in the conversion of all silicon tetrahedra in 
minerals into silicon octahedra at deep mantle conditions 
[433, 434].

For many oxides and silicates, the application of pressure 
forces the atoms to occupy a smaller volume, leading to HP 
structures composed of the closest-packed arrays of atoms. 
However, as discussed in section 4.1.1, because of the inter-
action of the inner electrons, irregularly-shaped atoms, and 
the resulting complicated structures, the phase diagrams of 
even single elements can be very complex. Both Li and Na 
display unusual ‘melt-down’ phenomena induced by quantum 
effects. When they eventually solidify at lower temperatures, 
the simple metals adopt a range of highly complex structures 
previously unobserved in any element. Na remains a liquid at 
room temperature at 110 GPa, while Li has a melting point of 

190 K at 45 GPa, by far the lowest melting point among the 
elemental metals [345].

The HP effect is particularly dramatic on the relatively 
compressible simple molecular compounds. Under HP, 
molecular CO is converted into an extended polymeric solid 
with very high energy density [435]. Dry ice CO2 becomes 
quartz-like and exhibits a rich phase diagram [436–442] and 
pressure-induced amorphization [443, 444]. With different 
arrangements of hydrogen bonding, H2O alone has fifteen 
stable phases and an additional fifteen distinctive metasta-
ble crystalline, amorphous, and fluid phases [98, 268, 393, 
395, 445–458]. Intermolecular interactions dictate the rich 
HP polymorphism [459] of solid oxygen. HP IXS of oxygen 
K-edge excitations to 38 GPa shows that O2 molecules inter-
act predominantly through the half-filled 1π∗g orbital  <10 GPa 
[460]. Enhanced intermolecular interactions develop because 
of increasing overlap of the 1π∗g orbital in the low-pressure 
phases, leading to electron delocalization and ultimately inter-
molecular bonding between O2 molecules at the transition to 
the ε-phase. The ε-phase, consisting of (O2)4 clusters [347, 
348], displays the bonding characteristics of a closed-shell 
system.

HP studies also provide detailed knowledge of atomic-
scale structural changes across phase transitions, which is 
essential for understanding the process and mechanism of the 
transitions. For example, silicon displays an intriguing precur-
sor lattice at HP, which provides a clue to understand the pro-
cess and mechanism of phase transitions in solids. The results 
from HP single-crystal XRD show that an embryonic phase 
can dynamically co-exist with the host lattice through collec-
tive motions [102]. This collective mechanism for the phase 
transition goes beyond previously considered reconstructive 
or displacive processes.

Despite the fast growing information on the phase dia-
grams of materials from HP studies with x-rays, the accurate 
determination of the phase equilibria and phase diagrams is 
not a trivial experimental task due to the kinetics of phase 
transitions and possible metastabilities. Depending on exper
imental conditions, such as hydrostaticity, compression and 
decompression rates, and temperature ranges, the determined 
phase relations may vary. The coexistence of two phases can 
appear in a large pressure range (e.g. [461]). Pressure induced 
amorphization has been reported for many materials. However, 
some of the effects previously reported as amorphization were 
likely due to the formation of nanocrystals or structural inter-
mediates [462], or amorphization could be bypassed, if more 
hydrostatic pressure media were used [463–465].

4.3.2.  High pressure melting.  As a special case of phase 
transition, HP melting is the subject of extensive studies. 
When materials melt, their physical properties, such as den-
sity, viscosity, absorption properties, and electrical resistance, 
undergo a sudden change. Such property changes character-
ize a first order phase transition and are often used to signify 
melting. Unlike other first order phase transitions, melting is 
characterized by the loss of long-range order and resistance to 
shear. To definitively identify melting, both of these two char-
acteristics must be demonstrated. Visual optical observation is 

Figure 23.  Fast collection of XRD data using rapid compression 
devices integrated with high temperature furnaces [108, 110]. 
Samples at elevated temperatures can be compressed in a few 
seconds to megabar pressures, resulting in thousands of XRD 
images in one fast loading process.
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a common way to determine whether melting has taken place. 
It is obvious that fluid flow observation is a good measure of 
the loss of resistance to shear, therefore it has been widely 
used [466–469]. However, visual observation (fluid flow) is 
less obvious as pressure increases, making it difficult to unam-
biguously define the onset of melting.

Synchrotron XRD has been combined with laser heated 
DAC and used in melting studies to document the loss of long 
range order [404, 470, 471]. Melting at HP is identified by 
the appearance of diffuse scattering from the melt, with the 
simultaneous loss of crystalline diffraction signals (figure 24).

In addition to XRD, synchrotron NFS (section 3.4.5) is 
a promising probe to identify melting. NFS measures the 
atomic thermal displacement that can be used for document-
ing the rigidity of a material. Upon melting, the strong elastic 
resonance signal diminishes in NFS. The mean square ther-
mal displacement of atoms (Lamb–Mössbauer factor) can 
be measured as a function of temperature, providing a plot 
for determining the onset of melting [302, 312]. Synchrotron 
x-ray absorption has also been successfully used for melting 
identification [142, 472].

Despite the success of using synchrotron x-rays in HP 
melting studies, discrepancies still exist in literature on melt-
ing lines, reflecting the difficulty of HP melting experiments 
due to the extreme conditions involved, possible chemical 
reactions, and/or unexpected diffusions. Unlike solid–solid 
phase transitions, kinetics is not a major limiting factor in 
determining melting. The challenge is mostly from several 
experimental aspects, including the identification of the onset 
of melting at well-defined P-T conditions (assignment), and 
fast measurements to avoid the effect of possible diffusion and 
chemical reactions. Another challenge is that the tail of x-ray 
beam, though typically  <10% in intensity, contributes ~50% 
in total x-ray scattering (diffraction) due to the large covered 
volume. The laser heating area has to be sufficiently large to 
avoid contamination from the x-ray tail.

4.4.  Electronic properties

Pressure dramatically alters electronic properties, such as 
bonding, hybridization, valence change, spin-paring, electron 
delocalization, etc, which has been widely studied, using HP 
single-crystal XRD, HP XRS, and HP IXS probes.

4.4.1.  Bonding at high pressure.  Bonding is usually charac-
terized by the primary source of binding energy, such as ionic, 
covalent, metallic, van der Waals, and hydrogen bonding. 
However, at HP, a distinction on the classification of bonding 
becomes less clear. A few rules of thumb exist for structural 
and bonding changes at HP [473, 474].

In ionic bonding materials, such as NaCl and MgO, the 
atoms may be viewed as soft spheres, with anions more 
compressible than the cations. Much of the phase diagrams 
and the coordination number increases of such materials 
can be explained by the packing of various sizes of spheres. 
Covalent bonds tend to be directional between two (or more) 
nuclei, decreasing the interatomic repulsion. Upon compres-
sion, the nuclei are brought closer to one another, increas-
ing the interatomic repulsion. The electron distribution must 
change and adapt to the compression, leading to changes in 
electronic structure. As a result, novel structural types with 
unusual bonds are observed even in elemental solids. Ge, 
a typical sp3 covalent bond framework, transforms from 
cubic (α-phase) to tetragonal (β-phase) around 11 GPa. 
Pressured induced changes in electron density distribution 
happen at pressures far below the α-β transition pressure 
[103]. It is generally accepted that the metallic character of 
the β-Ge is related to the increased coordination and strong 
participation of d-orbitals in the bands. The observation of 
pressure-induced changes in electronic structure revealed 
a pre-transition process, providing information on how the 
covalent bonds form on the ab plane and the metallic bond-
ing along the c-axis.

Figure 24.  X-ray diffraction data signifying the melting of iron at 58 GP. The melting is identified by the appearance of a diffuse scattering 
band from molten iron. (a), (b), and (c) are x-ray diffraction/scattering images recorded at different temperatures; (d) integrated patterns 
corresponding to these images. The structure factor of liquid iron essentially preserves the same shape along the melting curve up to 
58 GPa. (Modified with permission from [404]. Copyright 2004 by the American Physical Society.)
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The bonding in metals is viewed as positive ions embedded 
in a sea of electrons, with the negative electrons holding the 
ions together in a closely packed framework. The packing of 
equal-sized spheres maximizes at about 74% ( /π 18) of the 
available space. Deformed spheres may yield more efficient 
packing [473, 475]. There could be many ways of deforma-
tion to reach an optimal packing of spheres. One example is 
the appearance of sublattices in elemental metals displaying 
complex structures [476]. An interesting aspect is that instead 
of adopting more close-packed structures, the observed struc-
tures consist of an open framework and the bonding appears 
to be more directional.

Hydrogen bonds are essentially ionic bonds involving H 
and O. A hydrogen atom is covalently bonded to an oxygen 
atom and attracted electrostatically to a neighboring oxygen 
ion. H2O, a typical hydrogen bonding material, forms a sym-
metric hydrogen-bond state ‘ice X’ at 60 GPa [450]. In the ice 
X, the intermolecular O…H ‘hydrogen bonds’ no longer exist. 
All O–H bonds are equal in length and the molecular distinc-
tion of H2O has completely disappeared.

4.4.2.  Insulator, semiconductor, and metal.  Insulator, semi-
conductor, and metal are categorized by their electrical con-
ductivities. To transport electrons, partially filled states near 
the Fermi level are required. Metals have many partially filled 
states with energies near the Fermi level. Insulators, on the 
other hand, have few partially filled states, with the Fermi lev-
els lying within band gaps. Semiconductors have a small band 
gap or intermediate states (e.g. by chemical doping where 
electrons are excited into conduction bands or holes in the 
valence bands).

Because compression leads to increased interaction among 
filled and unfilled orbitals, the metallization of insulators and 
semiconductors has been recognized since the early stages of 
HP research [477]. Indeed, many materials display electronic 
transitions under HP without distinct structural changes. For 
example, a pressure-induced semiconducting to metallic trans
ition is found in multilayered MoS2 at approximately 19 GPa 
[478]. The metallization is associated with only a slight lat-
tice distortion and is characterized by pressure induced charge 
localization around the Mo atoms, which in turn gives rise 
to increased interaction between neighboring layers of sulfur 

atoms. It is also very common that pressure induced insu-
lator-semiconductor-metal transitions are accompanied by 
structural changes. Well-known examples include Si and Ge, 
both transforming from semiconductors to metallic phases at 
13 GPa and 11 GPa, respectively, accompanied by structural 
transitions from cubic to tetragonal β-tin structure.

For ‘simple’ metals such as Li and Na, we might expect 
them to become increasingly better conductors. Indeed, IXS 
experiments show that under 3.7 fold densification the solid 
Na of both bcc and fcc symmetry can be regarded as simple 
metals [274]. However, at extreme compression, core elec-
trons overlap, shaping the local volumes available to electrons. 
It was predicted that the valence electrons could move to inter-
stitial locations between the cores, and the crystal structure 
of the metal adapts to accommodate such electron-occupied 
interstices [479, 480] (figure 25). Sodium transforms into 
a dense insulating material that is optically transparent and 
lacks metallic characteristics at 200 GPa [481]. Lithium trans-
forms to a semiconductor at 80 GPa [482], and then again to 
metal at 120 GPa [483, 484].

Unlike chemical doping and nano-size controls, pressure 
can be effectively used as a ‘clean’ tuning parameter affect-
ing the interplay of electron correlation and lattice distortions. 
Vanadium oxides (VO2 and V2O3) display interesting metal-
insulating transitions, governed by two well-known phenom-
ena: the strong electron correlation (Mott–Hubbard) effect 
mediated by a weak cation–cation interaction and the lattice 
dimerization (Peierls distortion) [485–488]. VO2 was first 
identified as a classic Peierls transition due to the formation 
of spin singlets associated with V–V dimers in the monoclinic 
phase [489]. A recent study shows that tensile strain can tune 
this phase transition to become purely electronic without the 
Peierls distortion [490]. V2O3, on the other hand, is a proto-
typical Mott–Hubbard system [491]. At HP, the formation of 
the cation–cation bonding is observed, similar to a 2D Peierls-
like distortion, where the cation–cation dimer chains are con-
nected along the c-axis of the monoclinic cell [492, 493].

4.4.3.  Spin-pairing.  Spin-pairing occurs when the crystal 
field splitting changes or electron band widens [494]. Both 
XES and NFS (Mössbauer effect) are sensitive to the spin 
state of the transition metal ions. The Kβ emission line of 3d 

Figure 25.  Interstitial electron localization. Electronic density displays a localized character as the ratio rc/rs approaches close packing. 
(Modified with permission from [479]. Copyright 2008 by the American Physical Society.)
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metal ions has a satellite in the high-spin state, which disap-
pears in the low-spin state as illustrated in figure 26. In NFS 
data, the spin-pairing is identified by magnetic splitting in the 
hyperfine structure.

Spin crossovers of Fe at HP have significant implications in 
the mineralogy and dynamics of the deep earth. Following the 
observation of spin-pairing of Fe2+ in troilite (FeS) at 6.5 GPa 
[235] and ferropericlase (Fe, Mg)O at 60 GPa [243], spin trans
itions of both Fe2+ and Fe3+ have been observed in other major 
deep earth materials, such as bridgmanite, post-bridgmanite, 
and the core materials such as Fe3S and Fe3C (see [174] and 
references therein). The spin transitions in minerals affect their 
densities and P-V-T EOS [172, 173, 495], sound velocities 
[286, 496, 497], transport properties [498–501], and element 
partitioning [222, 243]. In ferropericlase, these effects have 
been well documented, whereas the effects of the spin transition 
of iron (Fe2+ and Fe3+) in bridgmanite and post-bridgmanite 
are much more complex and remain debated.

In transition-metal compounds, particularly oxides, sulfides, 
and halides, systematics for the d–d Coulomb energy U and 
the ligand-to-metal charge transfer energy Δ are generally used 
for describing the band gaps and electronic structures of the 
compounds [502]. Pressure-induced spin pairing strongly influ-
ences both U and Δ, providing an important mechanism in the 
pressure induced electronic structure changes of Mott–Hubbard 
(U  >  Δ) or charge-transfer (U  <  Δ) insulators. FeS falls at the 
boundary between charge-transfer and Mott–Hubbard insula-
tors with Δ  <  U and U relatively small. A reversible electronic 
transition in FeS is closely related to the structural transition 
from a manganese phosphide-like phase to a monoclinic phase, 
with no sign of metallization at the transition [503]. The XES 
result is consistent with the disappearance of the magnetic 
splitting from Mössbauer spectroscopy [504]. Late transition 
metal oxides (MnO, FeO, CoO) are typical Mott insulators 
of charge-transfer type (U  <  Δ). Both MnO and CoO show 
spin-pairings at about 80 and 100 GPa, respectively [505, 506]. 
The spin-transition pressures are consistent with the structural 
changes reported for MnO around 80–90 GPa from the rB1 to 
the nB8 structure [505], and for CoO around 90–95 GPa from 
the rB1 phase to a high-density rhombohedral phase [507]. FeO 
remains a magnetic insulator up to 150 GPa [241]. However, 
when the FeO sample was laser heated at 140 GPa, clear spin 
paring was observed in XES data [508], consistent with the 
structural change from rhombohedral to B8 (NiAs-type) struc-
ture [509]. From first principle computations, the spin-pairings 
in late transition oxides result from band broadening due to 
shorter nearest neighbor distances, rather than an increase of 
the crystal field splitting [510].

4.4.4.  Electron delocalization.  Electron delocalization 
occurs when tightly bound, atomic-like orbitals begin to mix 
with orbitals on neighboring lattice sites. HP can be used 
to effectively tune the electronic correlations, while exper
imentally measuring quantum observables by x-ray probes 
as the correlation evolves. Light rare-earth metals exhibit 
pressure-driven volume collapses attributable to 4f electron 
delocalization (e.g. Ce, Pr, and Gd). Their behavior has been 
approached by various models [511–513], and recently by a 

fully dynamical treatment of correlations in the lattice using 
dynamical mean-field theory (DMFT) [514]. HP RXES pro-
vides detailed information on the 4f electron occupancy as a 
function of pressure. Such results can be directly compared to 
DMFT predictions, making a powerful connection between 
experiment and theory.

The development of 4f occupation has been measured 
for Pr at pressures over 30 GPa (figure 27), crossing the 
transition from localized and nonbonding to delocalized 
and bonding at 20 GPa [249]. Comparison of the results to 
DMFT calculations indicates a strong connection between 
the 4f electronic structure and the volume-collapse. Similarly 
using RXES, Lγ emission of Ce metal has been measured 
across the γ-α volume collapse transition [250]. The satel-
lite peak of Lγ decreases 30% across the volume collapse, 
directly validating the Kondo model in conjunction with pre-
vious measurements [515]. The RXES data on Gd metal to 
113 GPa also suggest Kondo-like aspects in the delocaliza-
tion of 4f electrons [276]. However, a prolonged and con-
tinuous delocalization was observed for Gd throughout the 
entire pressure range, indicating that the volume-collapse 
transition for Gd at 59 GPa is only part of the electron delo-
calization. The Lγ1 XES spectra indicate no apparent change 
in the 4f moment across the collapse, suggesting that Kondo 
screening is responsible for the expected Pauli-like behavior 
in magnetic susceptibility.

4.5.  Phonon structure

Phonons, as delocalized and collective excitations, describe 
the dynamics of atomic motions in condensed matter. Phonon 
structure and phonon density of states are used to calculate 
fundamental thermodynamic quantities pertinent to lattice 
vibrations, including vibrational energy, vibrational entropy, 
specific heat capacity, and Debye temperature etc. Phonons 

Figure 26.  Iron Kβ emission spectra for several iron compounds. 
The spin-pairing state leaves a signature as satellite, showing a high 
spin state of FeS at ambient pressure and low spin states of FeS2 at 
ambient pressure and FeS at 11 GPa.
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are studied by optical Brillouin scattering (acoustic), Raman 
and IR spectroscopy. However, their dispersion throughout 
the Brillouin zone can only be measured by x-ray or neutron 
scattering (e.g. inelastic neutron scattering—INS). As shown 
in figure 13, IXS have a relative advantage over INS for study-
ing collective excitations at the high energy transfer region. 
More importantly, due to the large sample required in INS, 
x-ray studies of phonons at HP become unique.

4.5.1.  Phonon density of states.  HP NRIXS is a primary 
x-ray technique used for deriving (partial) phonon density of 
state (DOS) at HP. Iron is a suitable Mössbauer element and 
has been widely used in HP NRIXS studies for pure iron, iron 
containing materials and minerals. Since the first x-ray results 
of the phonon DOS of Fe at ambient pressure [296, 297], the 
phonon DOS of hcp-Fe has been extended to high pressures 
up to 42 GPa [155], 153 GPa [63], 171 GPa [300, 516], and 
recently to 136 GPa using a quasi-hydrostatic medium [517]. 
High temperatures have been added in the phonon DOS deter-
mination for Fe at HP [298, 299]. Figure 28 shows an example 
of the phonon DOS of Fe at 153 GPa, together with its derived 
thermodynamic quantities. A number of implications may be 
obtained from the phonon DOS. For example, the HP data on 
phonon DOS suggest restricted thermal atomic motion at high 
compression; the volume dependence of vibrational entropy 
may be used to determine the product of the vibrational ther-
mal expansion coefficient and isothermal bulk modulus [516]. 
From the low-energy region of each phonon DOS, Debye 
sound velocity can be derived.

Phonon DOS has been determined for a number of iron 
compounds and alloys: FeO [518, 519], FeS [520], Fe–Ni 
[521], Fe–Si alloys [288, 521], FeH [522], Fe3S [523], Fe3C 
[524–526], Fe2O3 [527], (Mg,Fe)O [496], and (Mg,Fe)SiO3 
enstatite [528]. For nanocrystalline Fe, large distortions were 

found in its phonon DOS [529], showing a lifetime broaden-
ing at high energies and an enhancement in its phonon DOS at 
energies below 15 meV.

By using both INS and NRIXS, the combined data sets 
provide the total phonon DOS and partial phonon DOS for 
elements other than Fe. For example, the determined vibra-
tional entropy in FeV was found to increase as ordering 
increased [530], contrary to the behavior of common order-
ing alloys. Phonons in the ordered FeV phase are softer than 
in the solid solution; and it is likely that high temperatures 
may stabilize the ordered phase. In Au–Fe alloys, a stiffen-
ing of the Au partial phonon DOS was found to increase with 
Fe concentration, which is consistent with the first princi-
ples calculations showing a local stiffening of Au–Au bonds 
close to Fe atoms [531]. Crossing the pressure-induced Invar 
transition (vanishing thermal expansion) in Pd3Fe, the stiff-
ening of the partial DOS with decreasing volume was found 
to be slower, owing to a relative softening of the first-near-
est-neighbor Fe–Pd longitudinal force constants at the Invar 
transition [532, 533].

HP studies on phonon DOS of elements other than Fe are 
relatively scarce. Some examples include Sn [534, 535], Kr 
[536], and Dy [537].

4.5.2.  Sound velocities.  In the low energy region, the pho-
non DOS shows Debye-like behavior, displaying a parabolic 
form with energy (E):
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where g(E) is the phonon DOS; M is the mass of the resonant 
nucleus, and ρ is the mass density of the solid. The projected 
sound velocity VD is Debye velocity, which can be obtained 
by the parabolic fitting of the low energy slope. Because the 

Figure 27.  (left) RXES spectra for Pr at high pressures at energies of 5958 eV and 5962 eV, respectively. Data points of the ratio of the A 
and B features in the E0 = 5962 eV data are plotted on the right. (right) Comparison of experimental and theoretical 4f3 to 4f2 occupancy 
ratios as a function of pressure for Pr metal. (Modified with permission from [249]. Copyright 2012 by the American Physical Society.)
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Debye velocity is related to compressional velocity (VP) and 
shear velocity (VS) by:
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where KS and G are adiabatic bulk modulus and shear modu-
lus, respectively, both VP and VS can be determined by solv-
ing equations (4.4) through (4.6). Examples of sound velocity 
determination using NRIXS include: Fe [63, 298, 516, 517], 
FeO [518, 519], FeS [520], Fe–Ni [521], Fe–Si alloys [288, 
521], FeH [522], Fe3S [523], Fe3C [524–526], Fe2O3 [527], 

and (Mg,Fe)O [496]. The Debye parabola is best constrained 
at the low-energy limit, and a resolution of better than 2 meV 
is therefore essential in NRIXS for approaching that limit. It 
should be noted that VD is heavily weighted (>90%) to VS (see 
equation (4.4)). Thus sound velocities determined by NRIXS 
are a good measure of shear velocities. However, from equa-
tion  (4.5), we can see that VP is mainly constrained by the 
term KS/ρ (that is determined by other methods e.g. XRD), 
which may contribute to the uncertainties in VP determination, 
in particular, when KS is not well constrained at HP.

VP can be more directly determined using HP HERIXS tech-
nique. By measuring the dispersion of longitudinal acoustic 
phonons, VP can be determined by fitting the dispersion curve, 
assuming a dispersion relation (e.g. a sine function). This method 
was applied to polycrystalline iron in a DAC, and the determined 
VP as a function of pressure was found to follow the Birch law 
[12]. VP in a highly textured hcp-Fe sample displayed a differ-
ence of 4–5% between the two velocities at 50° and 90° from 

Figure 28.  (left) Phonon density of states of 57Fe measured by NRIXS at high pressures are shown as circles with error bars. The thin 
dotted curves are from ab initio theory. (right) Thermodynamic parameters of Fe derived from phonon density of states. Solid curves 
show the fit to experimental data; dotted curves are from simulations. (Modified with permission from [63]. Copyright 2001 American 
Association for the Advancement of Science.)
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the c-axis, which is of the same order of the seismic anisotropy 
in Earth’s inner core [538, 539]. The effects of light elements 
on the sound velocities in iron were studied by measuring VP 
in FeO, FeSi, FeS, Fe0.89Ni0.04Si0.07, and FeS2 at HP [287, 288, 
540, 541]. HERIXS measurements have been recently extended 
to high temperatures [292–294]. These results are used to con-
strain the composition of the Earth’s core. Besides iron, other 
elements can also be studied with the HERIXS technique. For 
instance, the longitudinal acoustic phonon dispersion in poly-
crystalline Co up to 99 GPa has been measured using HERIXS 
[542], with a softening found at around 75 GPa.

4.5.3.  Phonon dynamics.  Complete phonon dispersion curves 
may be determined by HERIXS when a single-crystal sample 
is kept at HP. Sample quality and the hydrostatic environment 
become critical factors in the measurement of phonon disper-
sion relations. The lattice dynamics of Mo has been success-
fully studied up to 37 GPa [101]. A significant decrease in the 
H-point phonon in Mo was observed at HP, possibly due to a 
decrease in the magnitude of electron–phonon coupling. The 
phonon dispersion relations of f-electron element, Ce, were 
measured at HP across the isostructural γ-α transition [290]. 
Clear phonon softening across the transition was found (fig-
ure 29), indicating large modifications in the phonon–electron 
interactions. The lattice contribution to the phase transition is 
reflected by the derived vibrational entropy of 0.33 kB, com-
pared to the total entropy change of 1.5 kB.

Thermal diffuse scattering (TDS) has been used for obtain-
ing information on phonon dispersion relations [543], e.g. for 

Si [544] and V [545], all at ambient pressure. HP applications 
are still limited because of the weak diffuse signals and the 
need for accurate background subtraction arising from sur-
rounding materials (anvil or gasket). Nevertheless, it may be 
feasible to determine how TDS (hence phonon dispersions) 
changes with pressure if the phonon structure of materials is 
well determined at ambient pressure.

4.6.  Mechanical properties

Materials under compression undergo deformations. If the 
deformations are reversible upon the removal of load, it is 
called elastic deformation. Permanent deformations will 
occur when the stress reaches a critical value (the yield point), 
resulting in irreversible or plastic deformations. The elastic 
and plastic behaviors of materials at HP are well studied using 
x-ray synchrotron probes.

4.6.1.  Elasticity.  Materials’ elastic behavior is described by 
various elastic moduli and by elastic tensor (Cij) or elastic 
compliances (Sij). Commonly used elastic moduli include 
Young’s modulus, shear modulus (G), and bulk modulus (K); 
all of which are measures of the stiffness of a material, or 
resistance to deformation under an applied load. These param
eters are related to each other (e.g. equations  (4.4)–(4.6)). 
There are several HP techniques available for measuring these 
properties (radial XRD, ultrasonic techniques, Brillouin scat-
tering, NRIXS, and HERIXS), each with their own merits and 
limitations.

Figure 29.  Phonon dispersion of cerium metal at 0.6 GPa (γ-phase) and at 0.8 GPa (α-phase) determined by inelastic x-ray scattering. LA 
branches (circles), T1 1 1 0  branch (triangles), and T2 0 0 1  branches (diamonds). The lines are the results of theoretical fit, using different 
potentials. (Modified with permission from [290]. Copyright 2011 National Academy of Sciences.)
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The compressibility of materials arises from information 
on specific volumes at HP, which can be obtained from XRD 
and x-ray nano-imaging. Compression data from XRD or 
imaging give isothermal bulk modulus, KT, which is a fitting 
parameter to empirical EOS. The adiabatic and isothermal 
bulk moduli are related by KS  =  KT(1  +  αγT), where α and 
γ are thermal expansion coefficient and the Grüneisen param
eter, respectively. Data from ultrasonic techniques, HERIXS, 
NRIXS, and Brillouin scattering provide adiabatic bulk mod-
ulus KS. The KS  −  KT conversion uncertainty should be con-
sidered when comparing data from different techniques. For 
VP, although it can be determined by ultrasonic techniques 
(limited to low pressure) and optical Brillouin scattering (lim-
ited to transparent samples), a direct and accurate x-ray probe 
is HERIXS, as discussed in section 3.4.3. For VS, the x-ray 
technique NRIXS provides a good measure on shear proper-
ties because the measured VD from NRIXS depends heavily 
on VS. Note that NRIXS only works for Mössbauer elements. 
For other materials, shear properties are largely determined by 
ultrasonic techniques [546], Brillouin scattering [547, 548], 
and momentum resolved IXS on single-crystal samples.

The determination of the elastic tensor requires multiple 
measurements to be performed on different directions on a 
single-crystal. For a low-symmetry crystalline sample, it 
requires the measurement of many different directions within 
the sample, thus making relatively few complete determina-
tions of low symmetry materials. For high symmetry mat
erials, such as cubic symmetry, Cij can be determined from 
moduli or sound velocities plus density [93, 549]:
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4.6.2.  Plasticity.  Plasticity describes the deformation of a 
material undergoing non-reversible changes in shape, length, 
and volume. Unlike the elastic properties which can be con-
sidered as state variables, plastic processes are irreversible 
and dependent on pathways.

The origins of plastic deformations are more complex. 
In metals and other crystalline materials, the occurrence of 
plastic deformations at the micro-scale level is due to the 
motion of dislocations and the migration of grain boundaries 
on the micro-level. In granular materials, plastic flow is due 
to both the irreversible rearrangement of individual particles 
and to the irreversible crushing of individual particles. Plastic 
deformation is usually driven by non-hydrostatic (deviatoric) 
stress. Key information for determining plasticity includes a 
well-controlled measure of deforming stress and a measure 
of plastic strain, as well as the time dependence of the stress–
strain relation. Using two opposing anvils, DAC naturally 
generates uniaxial stress. On the basis of anisotropic linear 
elasticity theory [550], the deviatoric stress (t) in DAC may 
be expressed by:

  ( )σ σ= − =t G Q hkl61 3� (4.9)

where σ1 and σ3 are the stress components along and perpend
icular to the loading axis, respectively. ( )Q hkl  denotes the 
average of all Q(hkl) which can be obtained from strain εhkl 
measurements as a function of φ, the angle between the load-
ing axis and the momentum transfer, using the radial XRD 
technique:

 ( ) ( )ε φ= − Q hkl1 3 cos .hkl
2� (4.10)

Note that the t in equation  (4.9) is also related to the shear 
property G [62, 551]. In a data evaluation of MgO, it has been 
observed that plastic deformation effects a change in the stress 
field for subpopulations of grains, which represents different 
crystallographic orientations with respect to the applied stress 
field [552]. Quantitative measurement of deviatoric stress in 
the DAC remains a challenging task, partly because pres
sure generation and uniaxial stress are coupled in the DAC. 
A device called ‘deformation-DIA’ has been developed [210, 
553], which allows independent control of the differential 
stress and deformation strain under a certain confining pres
sure. Alternatively, a rotational Drickamer apparatus has been 
used for additional torsion through anvil rotation under a con-
fining pressure [554]. In these devices, strains of samples are 
measured by x-ray radiography. Differential stress can be esti-
mated according to linear elasticity theory [551, 555, 556].

Materials under uniaxial stress develop preferred lat-
tice orientation (or texture) which has a profound effect on 
the anisotropy of physical properties. Preferred orientation 
develops during dislocation glide which can be used to infer 
deformation mechanisms [91, 308, 493, 557]. Radial XRD 
offers a good measure of lattice preferred orientation. In 
the case of a polycrystalline sample, the intensity recorded 
at a certain sample orientation is proportional to the volume 
fraction of crystallites with their lattice planes in reflection 
geometry. This is often represented by the pole figure, a 2D 
projection of the 3D preferred orientation distribution (fig-
ure 30). With the orientation distribution information, we can 
calculate polycrystal physical properties based on our knowl-
edge of single-crystal physical properties (e.g. see a review 
article [558] and references therein). Pole figure  analysis 
also provides important information in understanding the 
mechanisms of texture, such as the dislocation glide dur-
ing deformation [90, 558–560], dislocation mechanism of 
nanomaterials [308, 492], recrystallization (e.g. [561]), grain 
boundary effect (e.g. [562]), and inherited textures through 
phase transformations (e.g. [563]).

4.6.3.  Strength.  The strength of a material is the ability to 
withstand an applied load without failure. Here, the ‘failure’ 
may be referred to as either the beginning of plastic deforma-
tion (i.e. yield strength) or complete failure, in the manner of 
ductile failure or brittle failure (i.e. compressive strength).

By determining the radial distribution of pressure in a 
DAC and assuming that the pressure gradient is supported by 
the sample’s strength [67], the strength of materials has been 
estimated based on the equation of force balance [564–567].  
Using radial XRD, the deviatoric stress t is determined accord-
ing to linear elasticity theory, which is then used to represent the 
strength of materials at HP [45, 329, 568–570]. In most cases, 
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because materials under DAC uniaxial stress undergo plastic 
deformation, the determined strength is usually a measure of 
compressive strength, but not yield strength. In particular, the 
plastic deformation of the sample may result in the reduction of 
the crystallite size and sample thickness, leading to strengthen-
ing due to grain size and work hardening. Thus, the strength 
determined from radial XRD could be significantly larger than 
the yield strength. For instance, the multifold increased strength 
of Re under pressure cannot be explained by shear-modulus 
scaling alone. Work hardening effect appears to be the domi-
nant factor leading to strengthening of Re under pressure [569].

If a relationship between deviatoric stress and strain is 
determined, the yield point can be detected by examining the 
derivative of the curve [571]. Information on deviatoric stress 
as a function of time allows us to locate the yield point of the 
material and thus obtain yield strength (e.g. [572]). The yield 
strength of some mantle minerals at HP-HT has been deter-
mined [572–576].

4.7.  New chemistry, new materials

Pressure is a fertile dimension for new chemistry and new 
compounds through an interplay of atomic (molecular) and 
electronic interactions. Many recent discoveries of novel 
bonding and material structures at HP indicate that our con-
ventional descriptions of atomic and electron behaviors are no 
longer adequate under pressure. The Periodic Table at HP is 
very different from the one at ambient pressure. New ‘rules’ of 
chemistry emerge [21, 473, 577–579] at extreme conditions.

4.7.1.  High pressure chemistry.  Because the compression 
energy (PΔV) can be comparable to or even exceed chemical 
bonding energy (~eV), observation of novel chemistry at HP 
is the norm [21, 578]. The question becomes what new ‘rules’ 
govern chemical bonding, structure, and reactivity at HP? Elec-
tron distributions at HP tend to be more delocalized, resulting 
in a tremendous richness in HP chemistry, including complex 
phase diagrams of ‘simple’ metals [345, 480], new forms of 
matter [151, 200], novel intermetallic compounds [99, 462], 
unexpected stoichiometry [195, 580, 581], and new noble gas 
chemistry [457, 582, 583]. For example, the valence state is 
usually derived from interatomic distances and the coordina-
tion number via bond valence sum rules [584]. At HP, the same 
rules no longer apply. By combining XAS, NFS, and XRD, the 
valence state of Eu atoms in EuO has been measured to 90 GPa 
[16]. Eu atoms display a mixed-valence state composed of dis-
crete Eu2+ and Eu3+, with an increasing averaged-valence as 
pressure is increased (figure 31). Unexpectedly at higher pres
sures, along with the NaCl  →  CsCl transition, a reentrant Eu 
transition into a lower valence state (nearly Eu2+) becomes 
obvious from both the XANES and NFS measurements.

In addition to inducing complex structural and electronic 
transformations, compression drives unexpected chemical 
reactivity. Methane has been synthesized from wüstite, cal-
cite and water at HP [585], demonstrating abiogenic path-
ways for the formation of hydrocarbons in the Earth’s deep 
interior at 200–300 km depth beneath the surface. In nitro-
gen chemistry, applying pressure induces bonding changes 
[586, 587], amorphization [588], changes in quencheabil-
ity [74, 589], metallization [590], and novel structures [392, 
591–598]. Many exotic nitrides have been synthesized under 
HP [22, 599–603], including new durable noble Ir, Pt, and Os 
metal nitrides synthesized at HP coupled with laser heating 
[603–606]. These new compounds have bulk moduli com-
parable to those of traditional superhard materials. In alkali 
and alkaline metals, because the energies of the s orbitals 
increase more rapidly with pressure than the energies of the  
d orbitals, pressure induced hybridization, such as s-to-d trans-
fer, is widely observed [607]. For instance, at ambient pres
sure, no compounds can be formed between the alkali metals 
(except lithium) and the transition metals to the left of gold in 
the Periodic Table [608], because the formation of transition 
metal alloys is favored between two metals with small differ-
ences in electron charge density (Miedema rules [609, 610]). 
As s-to-d transfer occurs under HP, charge density of the alkali 
metals increases significantly, allowing alloy formation with 
transition elements. Several compounds have been reported to 
form under pressure between K and Ni [99, 610] and Ag [611, 
612]. Recently, a novel Rb–Pt alloy at pressures above 17 GPa 
has been successfully synthesized [613]. The pressure-induced 
s-to-d electronic transition in Rb was monitored experimentally 
in situ by means of XANES at the Rb K-edge at HP. The alloy-
ing process with Pt in the pressure range of 17–23 GPa was 
revealed by both XANES and XRD, indicating that the synthe-
sis started with the s-to-d electronic transition in Rb, followed 
by the compound formation of Rb–Pt at higher pressures. In 
f-electron metals, two very dissimilar elements in atomic size 
and electronegativity, Ce and Al, form a substitutive alloy [58, 

Figure 30.  (top) Diffraction image of MgSiO3 post-bridgmanite 
at 185 GPa, with evident texture as systematic intensity variations 
along diffraction peaks. (bottom) Inverse pole figures of MgSiO3 
post-bridgmanite at 185 GPa, compared with simulation results for 
dominant slip on (0 0 1) and 40% compressive strain, imply a slip 
mechanism along (0 0 1) planes. (Modified with permission from 
[90]. Copyright 2010 American Association for the Advancement 
of Science.)
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200, 216], largely due to the Kondo volume collapse of Ce 4f 
electrons at HP greatly reducing its difference to Al (figure 32). 
Once formed, the alloy persists when the pressure is released.

In material synthesis, pressure adds a new dimension in cre-
ating exotic alloys and properties [614–618]. The formation of 
extended solids (polymers) is a common observation under HP, 
e.g. polymeric cg-N [586, 619]. Polymerization of formic acid 
is observed under HP [453]. A new polymeric form of silicon 
(Si24) has also been synthesized with a quasi-direct band gap 
that falls within the desired range for solar absorption [581]. 
Unlike the conventional diamond structure, this new allotrope 
consists of an interesting zeolite-type structure, which is com-
prised of channels with five-, six-and eight-membered silicon 
rings. Another interesting example of unprecedented reactiv-
ity and bonding is the reactivity of xenon at HP, forming novel 
xenon–hydrogen compounds [100, 583]. Mixtures of Xe–H2 at 
modest pressures (4.9, 5.4 GPa) were found to sequentially form 
high-hydrogen content xenon complexes Xe(H2)7 and Xe(H2)8 
with intact H2 groups (figure 33). The fact that pressure induces 
reactivity in xenon may not come as a surprise, considering that 
xenon is known to become metallic at HP. However, what is 
surprising is that a number of unexpected compounds dissimilar 
to those synthesized at ambient pressures are synthesized at HP 
and some of them are retrieved at ambient pressure on pressure 
release. These discoveries reveal the possibility of synthesizing 
a whole new class of compounds that have unexpected elec-
tronic properties due to xenon. The structures contain an excep-
tionally large molar equivalent of bound hydrogen, important 
for potential hydrogen storage applications [620].

4.7.2.  Photochemistry.  Ionizing radiation (UV to x-rays) can 
produce free radicals in irradiated solids, and the products of 
irradiation can often be preserved at cryogenic temperatures 

[621]. Irradiating samples with x-rays may induce ionization 
into fragmented ions and thus promote chemical reactions, 
enabling an otherwise inaccessible reaction pathway because 
the ionization barrier is often too big for thermal excitation 
or visible-to-IR lasers. Soft x-ray and UV is unusable at HP 
because it is completely blocked by the anvils or gasket. 
Irradiation with hard x-rays, in the region of 5–12 keV, not 
only provides penetrating power but also a sufficient absorp-
tion cross section to induce ionization, becoming a powerful 
technique to study irradiation chemistry at HP. The bond in 
molecules (e.g. O2, N2, CO2, H2O) can be broken by x-ray 
photons of tens of eV [622–624]. Some reaction products may 
be thermodynamically stable at ambient pressure.

For example, water (H2O) molecules ionized and subse-
quently formed O–O and H–H bonds, resulting in a molecular 
alloy of O2 and H2 [457] (figure 34). The formed crystalline 
solid remained stable with respect to variations in pressure 
and temperature, and further x-ray and laser exposure. It dif-
fers from previously known phases. Similarly when irradiat-
ing a mixture of liquid N2 and O2, the strong covalent bonding 
of the molecules is broken down, forming ionic compounds 
of complex nitrogen oxide ions [582]. Nitrogen and oxygen 
do not react with each other at room temperature due to the 
large covalent bond energy of the molecules. Irradiating a liq-
uid mixture of O2 and N2, contained in a DAC under pressure 
with a 10.2 keV synchrotron radiation, caused dissociation 

Figure 31.  Europium valence determined by x-ray absorption 
(XANES, red-circles) and nuclear forward scattering (NFS, black 
circles) techniques. Both the XANES and the NFS results are in good 
agreement but in stark difference to the bond-valence parametrization 
method (blue squares) results. (Modified with permission from [16]. 
Copyright 2012 by the American Physical Society.)

Figure 32.  (top) A metallic glass in Ce3Al composition crystallizes 
into an alloy with a FCC structure under compression above 
25 GPa. The alloy persists when the pressure is released. (bottom) 
Crystal structures of the two ordered compounds, α-Ce3Al and 
β-Ce3Al, and the new disordered fcc-Ce3Al alloy with diminishing 
size differences. (Modified with permission from [58]. Copyright 
2009 National Academy of Sciences.)
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of O2 and N2 molecules and induced a chemical reaction to 
form + −NO NO2 3 , an ionic phase of N2O5 [582]. In a study of 
the x-ray induced decomposition of KClO3 and KIO3 [625], 
the decomposition rate is found to be energy dependent, with 
an apparent resonance near 15 keV, maximizing the chemi-
cal decomposition rate. The resonance is likely related to the 
O–O distance in x-ray induced reactions. Irradiation chemis-
try at HP is widely used for studying the optimal pathways of 
hydrogen synthesis [626], gas-loading [627, 628], and synthe-
sizing new compounds [629–631].

4.7.3.  Superconductors.  The superconductivity of a large 
number of elements and compounds including cuprates [632, 
633], fullerides [634], intermetallic boron carbides [635], lay-
ered nitrides [636], magnesium diboride [637], iron pnictides 
[638], and recently hydrides [639, 640], can be strongly altered 
and tuned by pressure [641, 642]. Many elements, although 
not superconducting at ambient pressure, become supercon-
ductors at HP. The record high Tc (25 K) for elements has been 
observed in Ca at 161 GPa [643]. The search for new supercon-
ducting materials with high Tc was motivated by the discovery 
of superconductivity in cuprate in 1986 [632]. Soon after, a 
large positive pressure coefficient of Tc was detected, leading 
to an even higher Tc for cuprates up to liquid nitrogen temper
atures [632]. The record high Tc in cuprates high-Tc supercon-
ductors has been further driven to 164 K under HP [644].

Superconductivity and magnetism are considered to be 
in competition with each other. In the iron-based high-Tc 
superconductors, however, the origin of superconductivity is 
closely related to the magnetism of iron. By combining NFS 
and XRD, magnetic and structural transitions of the parent 
compound of iron-based superconductors BaFe2As2 have 
been studied under HP and low T conditions [645]. It is found 
that the magnetic ordering transition precedes the structural 
transition in BaFe2As2. The pressure-decoupled effect is quite 
different from the results by chemical-doping, where struc-
tural transitions always precede or coincide with magnetic 
transitions.

Superconductivity is closely related to crystallographic struc-
ture, electronic charge, and orbital and spin degrees of freedom. 
These can all be altered by pressure, temperature, magnetic 
field and chemical doping. Pressure is very useful in elucidating 
mechanisms of superconductivity as well as the search for new 
high-Tc superconducting materials. The physical understand-
ing of the pressure effects on superconductivity is related to all 
parameters of the phonon and electron systems, as well as their 
interactions. Information from x-ray probes greatly enhances 
our understanding of these materials by probing their structure 
(XRD), spin (XES), magnetic properties (NFS), electron exci-
tations (RIXS, XANES), and phonons (NRIXS, HERIXS).

Superconductors may display a positive pressure coef-
ficient of Tc. Pressure-tuned Tc often reaches a maximum 

Figure 33.  (left) X-ray single-crystal diffraction of Xe–H2 compound at 4.9 GPa. A total of 201 reflections could be indexed on a hexagonal 
unit cell. (right) Model structure of Xe(H2)7. The xenon atoms are surrounded by dumbbell-shaped hydrogen molecules. (Modified with 
permission from [100]. Copyright 2010 Macmillan Publishers Limited.)

Figure 34.  X-ray-induced dissociation of H2O and the formation 
of an O2–H2 alloy. Sharp powder diffraction rings indicate that the 
alloy is a well-crystallized solid. Its diffraction pattern shows some 
similarity, but does not exactly fit, to ε-O2. The inset is a photograph 
of the sample after x-ray exposure at 15.3 GPa. (Modified with 
permission from [457]. Copyright 2006 American Association for 
the Advancement of Science.)
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value and then drops monotonically at higher pressures [579, 
646]. In a recent study on iron chalcogenides [647], a second 
superconducting phase suddenly reemerges above 11.5 GPa, 
after the Tc drops from the first maximum of 32 K at 1 GPa 
(figure 35). The Tc of the re-emerging superconducting phase 
is higher than the first maximum, reaching 48.0–48.7 K. 
Interestingly, XRD experiments show that the basic structure 
of these compounds was not changed in this pressure range. 
Therefore, the re-emergence of superconductivity with higher 
Tc reflects detailed structural variances within the basic unit 
cell. The two superconducting domes were likely the result of 
different charge carriers. The two-step enhancement of Tc is 
also found in trilayer Bi2Sr2Ca2Cu3O10+δ (Bi2223) [648]. In a 
rare-earth-doped Ca0.86Pr0.14Fe2As2 single-crystalline sample, 
the electrical resistance measurements using a designer DAC 
show an intriguing observation of superconductivity under 
pressure, with Tc as high as ~51 K at 1.9 GPa [649].

4.7.4.  Superhard materials.  Hardness is a measure of the 
resistance of solids to deformation and is characterized by 
indenting a material using a hard indenter. Materials with 
Vickers hardness larger than 40 GPa are generally referred 
as superhard materials. These materials may be empirically 
related to high bulk modulus [650] and high shear modulus 
[599]. Strengthening due to grain size and nanotwinned struc-
tures also contributes to super hardness [651, 652], resulting 
in hardness higher than that of single-crystal diamond [652].

Microscopically, hardness can be defined as the combined 
resistance of chemical bonds in a crystal to indentation, with 
the determining factors of superhard materials being high bond 
strength, short bond distance, and high valence electron density 
(e.g. [653, 654]). These factors can all be enhanced at HP, mak-
ing HP a common route for synthesizing and studying super-
hard materials. In situ x-ray probes can be used to study the 
bonding (IXS), structure and atomic distance (XRD), and elec-
tron density distribution (single-crystal XRD), and have been 
widely used in the quest for superhard materials [38, 655–658].

In general, superhard materials are all covalent and polar 
covalent solids. The major types of superhard materials are 
the B–C–N–O compounds with characteristics of short and 
strong 3D covalent bonds. Diamond, the hardest known sub-
stance until recently [652], is a well-known carbon form that 
can be synthesized from graphite at HP conditions [659]. 
When graphite is compressed under ambient temperature, 
x-ray IXS experiments showed that it undergoes a transition 
at 17 GPa, where half of the π-bonds between graphite layers 
convert to σ-bonds, whereas the other half remain as π-bonds 
in the HP form [72]. The HP form has a distorted M-carbon 
structure [660] and is super hard, capable of indenting cubic-
diamond single crystals. Similarly, compressing fullerenes 
causes crushed C60 cages, forming superhard forms of carbon 
that are quenchable to ambient pressure [421, 661]. Individual 
C60 molecules are estimated to have an extremely high elas-
tic modulus of 800–900 GPa [662]. High hardness and high 
plasticity have been observed for 3D-polymerized C60-based 
materials [663–665]. When a glassy carbon, composing of dis
ordered graphene layers, is compressed to 40 GPa, a new car-
bon form has been observed with a fully σ-bonded amorphous 

structure [261]. The HP glassy form is capable of holding a 
large stress difference of  >70 GPa, indicating the high hard-
ness of this HP carbon allotrope. Adding boron into carbon, a 
cubic diamond-like BC5 phase has been synthesized at 24 GPa 
and about 2200 K [666], which exhibits extreme Vickers hard-
ness (71 GPa) and high thermal stability (up to 1900 K). Light 
element compounds in the B–C–N–O system are the most 
appealing materials for novel superhard materials; inspiring 
extensive studies e.g. [22, 654, 667–669].

Another type includes the compounds formed by light 
elements (B, C, and N) and heavy transition metals (e.g. 
[670]). The metals of high valence electron density provide 
high incompressibility, while light elements enable direc-
tional covalent bonds to form. However, in transition metal 
compounds the enhancement effect from valence electrons is 
largely offset by the large bond length. For example, ReB2 is 
reported to have an average hardness of 48 GPa [671]. Radial 
diffraction indicates that ReB2 is able to support a remarkably 
high differential stress. In OsB2, the axis compressibility in 
the orthorhombic c-direction is less than the axis compress-
ibility found in diamond [672]. Transition metal nitrides (e.g. 
PtN, PtN2, IrN2, OsN2) are found to have bulk moduli com-
parable with those of the traditional superhard materials [605, 
606]. For IrN2, the measured bulk modulus (K0  =  428(12) 
GPa) is second only to that of diamond (K0  =  440 GPa).

It should be noted that super hardness can be enhanced via 
nanotwinning and grain size effect. Recently, nanotwinned 
diamond and nanotwinned cubic boron nitride have dis-
played unprecedented hardness and stability [651, 652]. Bulk 
nanocrystalline diamonds and cubic boron nitrides have been 
synthesized under HP conditions with an enhanced hardness 
of 140 GPa [38] and 85 GPa [673], respectively.

Figure 35.  Pressure dependence of Tc for the iron-based 
superconductors, showing the re-appearance of superconductivity 
at high pressure. The symbols represent the pressure–temperature 
conditions for which Tc values were observed for four different 
samples from the resistive and alternating-current susceptibility 
measurements. Two superconducting regions (SC-I and SC-II) 
are separated by a critical pressure at around 10 GPa. NSC: the 
non-superconducting region above 13.2 GPa. The inset is the 
setup for susceptibility measurements in DACs, with a signal coil 
and a compensating coil. (Modified with permission from [647]. 
Copyright 2012 Royal Society of Chemistry.)
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4.7.5.  Energy materials.  Energy materials include those 
with properties for energy production, storage, conversion, 
and transfer, those used in energy technology with excellent 
thermomechanical, chemical, and radiation performance, and 
electromagnetic extreme environments with minimal fatigue, 
corrosion, and degradation over time. HP studies not only 
provide an important route towards discovering new materials 
with exceptional properties, but also the fundamental knowl-
edge of understanding the performance of these materials.

Many potential hydrogen storage materials have been stud-
ied under pressure (see a recent review [674] and references 
therein) and belong to four major classes; simple hydride, 
complex hydride, chemical hydride and hydrogen containing 
materials. The highest hydrogen content in a compound is that 
of the van der Waals compound (H2)4CH4 discovered at HP 
[675, 676] with 92.3% (atomic) and 50% (weight) hydrogen. 
Two hydrogen hydrates H2(H2O) and H2(H2O)6 were first dis-
covered at 2 GPa [677]. In an attempt to recover the hydrate at 
low temperature, a new H2(H2O)2 clathrate was discovered at 
0.2 GPa and recovered at ambient pressure well above liquid 
nitrogen temperature [678, 679]. The application of pressure 
successfully yielded even more hydrogen in many hydrogen-
rich compounds, such as ammonia borane [680] and SiH4 
[620].

Transport processes in materials, such as ion diffusion 
and polaron hopping in many cathode materials for Li-ion 
batteries, usually involve a kinetic step. The activation vol-
ume, which may be measured by HP NFS, sets the pressure 
dependence of the transport process. For example, HP NFS 
studies provide information on the valence fluctuations of Fe 
[681–683] in iron-containing compounds. The application of 
pressure reveals the activation volume of the polaron hopping 
in Li0.6FePO4 to be large and positive [684]. The motion of 
the electron polaron strongly correlates with the motion of Li+ 
ions, suppressing polaron hopping and making it sensitive to 
lattice defects.

4.8.  Earth and planetary sciences

The bulk of Earth and other planets are hidden within their 
deep interiors under HP-HT conditions. The behavior of these 
materials at HP-HT provides crucial information for under-
standing the formation, evolution, and present state of the 
planets. HP experimentation becomes an important comp
onent in mineral sciences, and relates to a rich array of large-
scale processes and phenomena observed by geophysical, 
geodynamical, and geochemical studies. For example: the fate 
of deeply subducted slabs, the origin of plumes, the nature of 
the core-mantle boundary, the differentiation of materials to 
form the present-day crust, mantle, and core, the distribution 
of trace elements, and the uptake and recycling of volatiles 
throughout planetary histories.

The experimental geophysics of the Earth and planetary 
interiors have been studied extensively with various x-ray 
techniques, as summarized in numerous review articles [3, 
6, 685, 686]. Specific HP investigations of mineral physical 
properties include: XRD methods for HP mineral structures 
[165]; synchrotron x-ray Raman scattering for the analysis 

of bonding, electronic and magnetic properties of earth mat
erials [31, 174, 382, 510]; synchrotron NRIXS for phonon and 
Mössbauer effects [687]; and synchrotron x-ray methods for 
elastic and rheological properties [247, 688–690].

5.  Future perspectives

After the pioneering integration of HP and synchrotron x-ray 
techniques in the 1990s, and the symbiotic development, con-
solidation, and exploitation in the past decade, how does the 
next decade look like? Obviously, we are facing numerous 
exciting opportunities for x-ray studies at HP, including vast 
improvements in x-ray beam properties, novel HP technolo-
gies, advanced x-ray optics, detectors, and theory. A new era 
is likely to emerge in HP-SR science, one that revolutionarily 
redefines the scope of HP research and promises an in-depth 
understanding of matter under extreme conditions across the 
entire hierarchy of length and time scales.

As in the past with the arrival of the third generation syn-
chrotron facilities, new breakthroughs will emerge with the 
development of new x-ray sources. A new avenue for creat-
ing high brightness x-ray beams has been adopted in several 
storage ring based synchrotron sources worldwide, based 
on the use of multi-bend achromat (MBA) magnet lattices 
[691, 692]. With the new MBA, the emittance in horizontal 
direction will be significantly reduced, resulting in a ‘round’ 
x-ray beam ideal for developing powerful new capabilities 
for HP research. Together with the use of advanced undula-
tors and x-ray focusing optics, the MBA upgrade will pro-
vide an increase of 2–3 orders of magnitude in brightness 
and coherence at high energy [693]. The low emittance and 
high brightness will dramatically improve the ability to study 
smaller samples and faster processes with greater precision 
and accuracy. The exceptionally high coherence fraction will 
allow new coherence based x-ray imaging techniques to be 
developed for 3D morphology and strain distributions of HP 
samples, and for studies of the slow dynamics of various equi-
librium and non-equilibrium processes at HP. Ultrahigh pres
sure frontiers will be extensively explored using ever smaller 
x-ray beams to reduce stress gradients at multi-megabar pres
sures. DACs are currently capable of obtaining pressures in 
excess of 400 GPa. With particular anvil geometry including 
the double stage arrangement [48, 50], there is currently an 
international effort to extend the pressure range to 1 TPa and 
beyond. The extended pressure range will revolutionarily 
redefine the scope of HP research.

The vast scope will greatly benefit from the advanced x-ray 
probes that will have orders of magnitude improvements in 
both spatial and temporal resolution in HP experiments. These 
advances will significantly enhance the precision and accuracy 
of HP measurements, in particular at megabar pressures. We 
will have an in-depth understanding of matter under more 
extreme conditions, such as precisely defining phase relations 
at megabar pressures, accurately determining P-V-T-structure 
relations at megabar pressures and at T  >  6000 K, measur-
ing melting curves of materials beyond 300 GPa, addressing 
polyamorphism in liquids at extreme conditions, detailing 
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chemical reactions at megabar pressures, and establishing 
‘new rules’ in chemistry at megabars.

An important aspect from the increase in photon bright-
ness is the enhancement of time resolved x-ray capabili-
ties from currently ms level to ns level. This can be further 
improved to 100 fs level with the free electron laser (FEL) 
sources, with peak brightness about 109 times higher than 
the existing storage ring sources. Coupled with the advance-
ment in rapid compression (or decompression) and modu-
lated heating (or cooling), the enhanced time resolution will 
broadly address materials’ dynamic processes and proper-
ties, including:

	 •	transformation pathways—nucleation, growth and 
metastable or intermediate phases,

	 •	stress relaxation, plasticity, and rheological properties at 
megabar pressures,

	 •	non-equilibrium transformations, e.g. super-heating/
cooling, over-/under-pressurization,

	 •	material dynamics that occur during material synthesis 
(e.g. nucleation, growth) or during material failure  
(e.g. under stress and radiation),

	 •	microstructure interactions and evolution, and
	 •	incomplete transformations, phase hysteresis, retained 

phases.

The great improvement of x-ray spatial resolution below 
µm toward nm level couples well with the extreme HP that is 
accomplished on ever smaller sample size. Focused incident 
x-ray beam below 100 nm enables diffraction, spectroscopy, 
and imaging studies of submicron samples at multimegabar 
pressures [694]. Perhaps the biggest changes will come 
from the advanced capabilities of nm spatial resolution to 
examine in situ the hierarchical structures from the electron 
level to the macroscopic level, and study how they change in 
time and in response to external P-T conditions. Modeling 
the properties of polycrystalline components is a complex 
multiple length scale problem. Grains are characterized by 
their crystallographic orientation and boundary topology. 
Individual grains and boundaries have anisotropic proper-
ties but are constrained by their neighborhood until damage 
occurs. It is therefore crucial to observe the individual states 
of grains and boundaries before macroscopic averaging to 
reveal underlying physical principles. The sub-micron x-ray 
probes will provide crystallographic information on single 
grains of powder samples for detailed crystallographic data 
at ultrahigh pressures including structure refinement, thermal 
parameters, detail atomic positions, and even electron den-
sity topology. Bonding and electronic dynamics at megabar 
pressures will be studied using IXS and XRS techniques. 
Meanwhile, the nanometer spatial resolution will allow for 
studies of materials microstructures and grain-boundaries 
using various x-ray imaging techniques including diffraction 
contrast, phase contrast, and coherent diffraction imaging. 
Property specific 3D images, such as composition, phase, 
valence, magnetic, strain, and shape, will be mapped for 
materials in response to extreme P-T conditions and time. 
Frontier research areas will emerge for studying matter 
under extreme conditions, such as:

	 •	effects of inhomogeneities on antiferromagnetic order 
and superconductivity in high-Tc superconductors,

	 •	electronic origins of materials behavior and performance,
	 •	pressure induced band gap engineering via precursors, 

intermediates and metastable phases,
	 •	lattice defects, domains, and their transport in materials 

and condensed matter systems, and
	 •	materials strength and plasticity by measuring the evo

lution of local orientations and sub-grain strains within 
deformed materials.
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