Full length article

Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass

Rachel Liontasa, Mehdi Jafary-Zadehb, Qiaoshi Zengc, d, Yong-Wei Zhangb, Wendy L. Maoe, f, Julia R. Greerg,*

a Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
b Institute of High Performance Computing (IHPC), A*STAR, 138632, Singapore
c Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, PR China
d Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
e Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
f Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
g Division of Engineering and Applied Science, California Institute of Technology, Pasadena CA 91125, USA

Article info

Article history:
Received 5 February 2016
Received in revised form 25 July 2016
Accepted 25 July 2016

Keywords:
Metallic glass
Ductility
In situ tension test
Molecular dynamics
Synchrotron XRD

A B S T R A C T

We investigate the mechanical behavior and atomic-level structure of glassy Zr-Ni-Al nano-tensile specimens with widths between 75 and 215 nm. We focus our studies on two different energy states: (1) as-sputtered and (2) sputtered then annealed below the glass transition temperature (T_g). In-situ tensile experiments conducted inside a scanning electron microscope (SEM) reveal substantial tensile ductility in some cases reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in specimens as wide as ~150 nm. We found the extent of ductility depends on both the specimen size and the annealing conditions. Using molecular dynamics (MD) simulations, transmission electron microscopy (TEM), and synchrotron x-ray diffraction (XRD), we explain the observed mechanical behavior through changes in free volume as well as short- and medium-range atomic-level order that occur upon annealing. This work demonstrates the importance of carefully choosing the metallic glass fabrication method and post-processing conditions for achieving a certain atomic-level structure and free volume within the metallic glass, which then determine the overall mechanical response. An important implication is that sputter deposition may be a particularly promising technique for producing thin coatings of metallic glasses with significant ductility, due to the high level of disorder and excess free volume resulting from the sputtering process and to the suitability of sputtering for producing thin coatings that may exhibit enhanced size-induced ductility.

© 2016 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Metallic glasses are a unique class of materials that possess an amorphous atomic-level structure, as in oxide glasses, and cohesive metallic bonding, as in metals. This combination of features leads to a host of desirable mechanical properties, including high strength and hardness, good wear and corrosion resistance, a large elastic strain limit, and low mechanical dissipation [1]. Room temperature deformation of metallic glasses typically involves localization of plastic strain into narrow bands, known as shear bands, resulting in catastrophic failure and a lack of tensile ductility [2]. Some monolithic bulk metallic glasses have been shown to exhibit significant plasticity under compression [3–7]; all exhibit virtually no extendibility (<0.5% strain) under tension. Much recent research in metallic glasses has been dedicated to developing ways of accommodating plastic deformation to impart tensile ductility, to suppress catastrophic failure, and to improve the mechanical properties of metallic glasses, rendering them suitable in structural applications.

Tensile ductility at room temperature has been shown to emerge in monolithic metallic glasses only when the sample size is reduced to the nanoscale [8–10]. The extent of this tensile ductility was reported to vary widely as a function of the specific metallic glass and its processing conditions, with some studies indicating almost no plasticity (<1%) even for sub-100 nm molded
of twin-jet electropolished Al$_{90}$Fe$_5$Ce$_5$ [10]. The aim of this work is to understand the origins of why certain nano-sized metallic glasses exhibit substantial ductility, in excess of 100% true strain. For monolithic metallic glasses, the main research thrusts towards understanding why certain metallic glasses exhibit enhanced ductility have focused on the choice of alloying elements and the corresponding stoichiometry of those constituent elements. Some studies indicate that ductility can be brought about by choosing alloying elements such that the ratio of the elastic shear modulus to the bulk modulus is low, i.e. less than 0.41–0.43 [14,15]. These investigations do not take into account the effects of the metallic glass fabrication method and processing conditions on ductility, which likely serve as key factors in governing post-elastic deformability in these materials. Metallic glasses may be formed through a variety of methods including splat quenching, melt spinning, copper-mold casting, arc melting, electrodeposition, and sputtering. A metallic glass formed by copper-mold casting could exhibit a significant difference in ductility from a metallic glass fabricated by the same chemical composition formed by sputtering. Even a single metallic glass fabrication method has some variability in processing conditions, such as the cooling rate of splat quenching, or the deposition conditions of sputtering, which could greatly influence the presence of free volume.

We investigated the mechanical behavior and atomic level structure of sputter-deposited Zr-Ni-Al metallic glass. The mechanical response of this metallic glass was studied through in-situ uniaxial tension experiments conducted inside a scanning electron microscope (SEM) on nano-sized specimens with widths of 75–215 nm. These nano-samples were fabricated by focused-ion beam (FIB) milling of sputtered Zr-Ni-Al in two different energy states: (1) as-sputtered and (2) sputtered and then annealed at 625 K for 24 h. We chose Zr-Ni-Al as our model metallic glass because of its oxidation resistance [16,17] and excellent glass-forming ability [18,19]. The high T_g of Zr-Ni-Al metallic glass, reported to range from 680 to 760 K depending on composition [20], increases the applicability of this metallic glass to extreme environments, such as those involving elevated temperatures and radiation, with a lower risk of crystallization or oxidation. The Zr-Ni-Al system contains only metallic components, which renders it a more representative metallic glass with true metallic bonding, as opposed to a system containing metalloid components with some covalent bonding. The properties of metal-metal systems are much better understood than those of metal-metalloid systems, whose covalent interatomic bonds influence glass formation and make modeling such systems difficult [21]. With only three component elements, this system is also practical for conducting molecular dynamics (MD) simulations. The shortage of literature on mechanical properties and detailed structural analysis of sputtered Zr-Ni-Al metallic glass motivated us to undertake a fundamental study of its mechanical behavior and atomic-level structure. The microstructure was analyzed by transmission electron microscopy (TEM) and synchrotron X-ray diffraction (XRD) to elucidate the unique atomic arrangement brought about by forming this metallic glass via sputtering and the changes in this structure that occur as a result of subsequent annealing. Mechanical behavior was assessed by conducting in-situ uniaxial tension and compression experiments: the tensile results are the focus of the current work, and the compression results are included in the Appendix A. MD simulations were conducted to explore the effect of metallic glass fabrication conditions, sub-T_g annealing, and sample size.

2. Methods

2.1. Fabrication of free-standing Zr-Ni-Al nano-tensile specimens

All samples in this study were fabricated from a sputtered Zr-Ni-Al metallic glass thin film. We deposit this material by sputtering an alloyed Zr$_{50}$Ni$_{22}$Al$_{28}$ target (ACI Alloys, Inc.) with a base pressure less than 1×10^{-6} Torr using a DC power supply at 100 W under 3 mTorr argon in a magnetron sputter deposition system (ATC Orion sputtering system, AJA International, Inc.). The sputtering process produces an amorphous Zr-Ni-Al film, which is the starting point for the fabrication of nano-tensile specimens. Samples were fabricated from two different amorphous states of this metallic glass: (1) as-sputtered and (2) sputtered then annealed at the sub-T_g temperature of 625 K for 24 h. For the as-sputtered state, specimens were fabricated by sputtering Zr-Ni-Al directly onto a silicon TEM grid (PELCO Lift-Out TEM grid, Ted Pella) to a minimum thickness of 3 μm as shown in Fig. 1 Step (1–2) and then using XeF$_2$ gas from the insulator enhanced etching system in a SEM to selectively etch away the silicon substrate underneath the sputtered Zr-Ni-Al. In this step, a fine needle was positioned close to the sample surface to create a high local flux of XeF$_2$ gas while the ion beam was used to induce reactions between the XeF$_2$ gas and the scanned area. These efforts were to minimize and/or to eliminate any possible etching of the Zr-Ni-Al metallic glass via the combined effect of the chemical selectivity of XeF$_2$ for Si and by physically selecting only Si as the scanned area in the SEM. This resulted in the creation of a free-standing Zr-Ni-Al film directly on the TEM grid, which was then FIB-milled into the desired geometry of nano-tensile specimens shown in the insets of Fig. 1 Step (4). The FIB-milling step in the specimen fabrication required extensive tilting and rotating of the SEM stage to achieve the desired removal of material. A schematic of this process is shown in Fig. 1. This methodology allowed fabrication of the specimens directly on the TEM grid, which facilitated the TEM analysis after tension experiments. The resultant specimens contained test-sections that were approximately square in cross-section with rounded corners. Specimens of this as-sputtered metallic glass were fabricated with widths ranging from 85 to 215 nm and heights correspond to an aspect ratio of ~1:10.

To fabricate specimens in the annealed state, the TEM grid with the ~3 μm-thick sputter-deposited Zr-Ni-Al film was annealed in a Carbolite tube furnace (in between Steps (2) and (3) of Fig. 1). Prior to raising the temperature of the furnace, argon was flowed through the tube furnace at a rate of 3 L per minute for 1 h to avoid sample oxidation; this flow rate was maintained during the entire annealing process. The temperature of the tube furnace was increased from room temperature to the annealing temperature of 625 K at a rate of 45 K min$^{-1}$ and then held at the annealing temperature for 24 h. From literature, the T_g of Zr$_{50}$Ni$_{22}$Al$_{28}$ is 757.1 K [20], which means the annealing temperature of 625 K roughly corresponds to 80% of T_g. After the 24-h annealing period, the furnace was turned off and allowed to reach room temperature before stopping the argon flow and removing the sample. Following annealing, nano-tensile specimens were fabricated using an identical FIB-milling process as the ones made from the as-sputtered state, with similar sizes of 79–209 nm, and the aspect ratio of ~1:10. Potential oxidation induced by the annealing was prevented by conducting the annealing in an argon environment. FIB-milling the specimens from a larger film of annealed Zr-Ni-Al metallic glass provided substantial oxidation protection as any surface oxide layers that may have formed during annealing were removed by the FIB, and the resultant specimen test-section consists of material
at a distance greater than 1 µm from the surfaces exposed to the annealing environment.

2.2. TEM characterization

TEM samples were prepared with the Ga⁺ FIB following standard lamella preparation techniques and by fabricating the nano-tensile specimens directly onto the TEM grid (Fig. 1). The FEI Technai TF20 transmission electron microscope was operated at 200 keV to obtain bright field and dark field images, diffraction patterns, high-resolution TEM images, and to conduct energy dispersive X-ray spectroscopy (EDS) in STEM mode. To assess any changes in the atomic structure as a result of tension experiments, some nano-tensile specimens were left untested; the microstructure in both types of specimens, mechanically strained and as-fabricated, was examined by TEM. To analyze the overall sample composition and phase homogeneity, we fabricated the lamella lift-out sample from a Zr-Ni-Al film that had been sputtered for ~20 h to a thickness of ~4.5 µm. EDS was conducted at several points along the depth of the film to determine whether there were any changes in the chemical composition with sputter deposition time.

2.3. In-situ uniaxial tension experiments

Uniaxial tensile experiments were performed in-situ inside an SEM to allow simultaneous visualization of deformation and
measurement of load and displacement during tensing. Tensile experiments were conducted using the Hysitron PI-85 nano-mechanical module in the FIB (FEI, Versa 3D). Tensile grips were fabricated by FIB-milling boron-doped diamond into a grip shape, shown in Figs. 3(a-d) and 4(a-d). To perform a tension experiment, a nano-tensile specimen was moved inside the tension grips and then a displacement-controlled uniaxial tension experiment was conducted at a strain rate of $1 \times 10^{-3} \text{s}^{-1}$ until the point of failure. Load-displacement data was acquired at a rate of 200 data points per second; to display representative data points, the data was smoothed with a span containing data over the nearest 2 nm of the displacement, using the lowess method in MATLAB, which involves a robust local regression using weighted linear least squares and a first degree polynomial model.

Load-displacement data was converted to stress and strain by measuring the relative dimensional changes throughout the experiments in each individual specimen. Engineering stresses and strains were calculated by utilizing the initial specimen height and cross-sectional area obtained from measurement of specimen height and width in SEM images taken prior to tensile experiments. True stresses and strains were calculated using the instantaneous specimen height and cross-sectional area during the tension experiment. To obtain these instantaneous specimen dimensions, we assumed that necking began at the maximum load during the tension experiment, and the criterion for necking was the presence of any stress-strain data beyond the maximum stress. We assumed that prior to necking the gauge length deformed uniformly, with $\sigma_T = \sigma_E (1 + \varepsilon_L)$ and $\varepsilon_T = \ln(1 + \varepsilon_L)$, where σ_T is true stress, σ_E is engineering stress, ε_E is engineering strain, and ε_T is true strain. To account for the large localization of deformation in the necked region that occurs upon necking, true stress-strain data was calculated after necking according to $\sigma_T = F/A_{\text{neck}}$ and $\varepsilon_T = \ln(A_0/A_{\text{neck}})$ where F is the load measured during the tension experiment, A_{neck} is the cross-sectional area of the thinnest portion of the necked region, and A_0 is the initial cross-sectional area of the specimen. The width of the neck region (w_{neck}) was measured at approximately 10 load-displacement points during necking. Due to the roughly square cross-sectional area of the specimens, the cross-sectional area of the necked region (A_{neck}) was calculated from measured as w_{neck}^2 and A_{neck} was assumed to vary linearly between each measurement point.

Engineering stresses and strains were used to calculate the elastic modulus (E), yield strain ($\varepsilon_{\text{y,engineering}}$), yield strength ($\sigma_y$), engineering plastic strain ($\varepsilon_p, \text{engineering}$), and ultimate tensile strength (UTS). The only mechanical property calculated form the true stress-strain data was the true plastic strain ($\varepsilon_p, \text{true}$). The elastic modulus was calculated as the slope of the loading curve by conducting a linear fit on the region of the loading curve just after any initial loading instabilities and just before the yield point. The yield point was determined by visually inspecting the data for the first deviation from linear elastic loading and the yield stress and strain (σ_y and $\varepsilon_{\text{y,engineering}}$) were defined as the respective stress and strain values at this yield point. The UTS was found as the maximum value of stress in the engineering stress-strain response of a specimen.

2.4. Synchrotron XRD characterization

Synchrotron XRD experiments were conducted on Zr-Ni-Al metallic glass in the same two states as the nano-mechanical experiments: (1) as-sputtered and (2) sputtered then annealed at 625 K. To obtain enough material for synchrotron XRD measurements, Zr-Ni-Al was deposited using identical sputter conditions discussed previously with kapton tape as the substrate, which allowed flakes of the sputtered Zr-Ni-Al to be easily removed from the kapton tape and collected for analysis. Synchrotron XRD analysis was conducted on the as-sputtered Zr-Ni-Al flakes and annealed flakes, which were annealed prior to the diffraction measurements using identical annealing conditions discussed previously. Synchrotron XRD was performed in a transmission geometry using the high-intensity, high-energy monochromatic beam at Sector 11-IDC of the Advanced Photon Source at Argonne National Laboratory. The photon energy was 105.1 keV corresponding to an X-ray wavelength of 0.11798 Å and the beam size was $0.5 \times 0.5 \text{mm}^2$. The X-ray attenuation length of the Zr$_{55}$Ni$_{25}$Al$_{20}$ sample at 105.1 keV is ~2.5 mm. Zr-Ni-Al flakes were sandwiched between two layers of kapton tape to increase the sample thickness.

![TEM and EDS elemental analysis on (a-c) as-sputtered and (d-g) annealed Zr-Ni-Al metallic glass, including (a) diffraction pattern from as-sputtered film, (b) high-resolution TEM image of the as-sputtered film, (c) EDS elemental analysis along the depth of the ~4.5 μm thick as-sputtered film with error denoting ±1σ in the measurement, (d) diffraction pattern from test section of the annealed nano-tensile specimen, (e) TEM image of the annealed nano-tensile specimen, (f) dark-field image on the surface edge of the annealed nano-tensile specimen, and (g) EDS elemental analysis on annealed nano-tensile specimens with error denoting ±1σ in the measurement.](image-url)
A Perkin Elmer area detector was set at a distance of 690.7 mm and CeO$_2$ was used as the calibration material. The exposure time was 90 s for each sample and the background scattering from air and the two layers of kapton tape. The resultant 2D image files were integrated using the Fit2D program to obtain 1D intensity distributions as a function of the wavevector Q, from which the structure factor ($S(Q)$) and the reduced pair-wise distribution function ($G(r)$) were derived using the PDFgetX3 program. The composition was assumed to be Zr$_{55}$Ni$_{25}$Al$_{20}$ for data analysis.

2.5. Molecular dynamics simulations

MD simulations were conducted on cylindrical Zr-Ni-Al metallic glass specimen using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [22]. The interatomic interactions were calculated by employing the embedded atom model (EAM) potential parameterized for the Zr-Ni-Al-Cu system [23]. To construct the samples, first, a 5 nm cube of the alloy with the atomic composition of Zr$_{55}$Ni$_{25}$Al$_{20}$ (in the range of our experiments) and periodic boundary conditions (PBCs) along all three dimensions was melted and equilibrated at 2300 K for 10 ns. Then, the liquid alloy was quenched to 50 K with a given cooling rate (e.g. 10^{10} K/s) at zero external pressure using the isothermal–isobaric (NPT ensemble) ensemble. To control the temperature and pressure of the simulations, Nose-Hoover thermostat and barostat were employed [24]. To integrate the equations of atomic motion, the Verlet algorithm [25] was used with the time step of 0.002 ps during the melting/quenching processes. The cylindrical sample for the uniaxial tensile test with diameter of 40 nm and length of 120 nm was then constructed by replicating the metallic glass cube. We applied PBCs in the direction parallel to the central axis of the cylinder (i.e. z direction), while free boundary conditions were applied in other directions. Before applying the tensile loading, the sample was equilibrated at 300 K (similar to the temperature of our experiments). The uniaxial loading was applied by rescaling the simulation box in the z direction with the strain rate of 4×10^{-4} s$^{-1}$. During the loading procedure, the time step of the Verlet algorithm was set to 0.001 ps. The engineering stress was calculated from the Virial atomic stress tensor [26,27]. As a measure of local (atomistic) deformation during loading, we adopted the atomic von Mises strain [28] and used OVITO package for the visualization [29].

In the MD simulations, we examined the following three factors: cooling rate, annealing condition and sample size. To understand the effect of cooling rate (i.e. the effect of fabrication variables), we constructed the tensile samples using glasses obtained with cooling rates of 10^{10} K/s, 10^{11} K/s, 10^{12} K/s, and 10^{13} K/s. Moreover, to study the effect of sub-T_g annealing (i.e. the effect of post-fabrication variables), the sample constructed with the cooling rate of 10^{13} K/s was annealed for up to 400 ns at 850 K ($\approx 0.8T_g$), and cooled back to 300 K with the same cooling rate. In addition, to study the size effect, tensile samples with diameters of 5, 10, 20, and 40 nm and the same aspect ratio (i.e. ratio of length to diameter) of 3 were prepared using the glass obtained with the cooling rate of 10^{10} K/s.

![Fig. 3. Uniaxial tensile experiments on the as-sputtered Zr-Ni-Al metallic glass samples, including (left) engineering stress-strain data, (center) true stress-strain data, and (a-d) SEM images from in-situ videos around the time of sample failure. The data is grouped by specimen size with ~90 nm wide specimens in the top row, ~110 nm wide specimens in the top-middle row, ~150 nm wide specimens in the bottom-middle row, and ~200 nm wide specimens in the bottom row.](image-url)
To characterize the short range order (SRO) present in the MD simulated samples we utilized the Voronoi tessellation method [30,31], whereby around each atom a Voronoi polyhedron is constructed with a certain number of triangular, quadrangular, pentagonal, and hexagonal faces, depending upon the arrangement of its nearest neighbor atoms. The Voronoi index of each atom corresponds to the number of faces in its surrounding Voronoi polyhedron, for example, a Voronoi index of \(<0,2,8,1>\) corresponds to a Voronoi polyhedron with 0 triangular faces, 2 quadrangular faces, 8 pentagonal faces, and 1 hexagonal face. With this notation, a Voronoi index of \(<0,0,12,0>\) corresponds to the Voronoi cell with the highest possible local symmetry, that is a regular dodecahedron with 12 nearest neighbor atoms arranged at the vertices of a full-icosahedron (FI) cluster. As an indicator of SRO, we mainly focus on tracking the concentration of the Al-centered full icosahedron (i.e. Al-FI with the Voronoi index of Al \(<0,0,12,0>\)) since this icosahedron configuration is known to be prevalent in a variety of metallic glass systems [32,33]. Other SRO clusters can also be tracked, as shown in Fig. A.3 of the Appendix A. We chose to focus on the Al-centered icosahedron because we found this particular cluster to be most sensitive to changes in processing conditions, such as annealing and utilizing different cooling rates, as shown in Fig. A.3 of the Appendix A. The average atomic potential energy of the system is another measure we utilized to assess the overall ordering in the system since a decrease in atomic potential energy signifies atoms in a more ordered, relaxed state.

2.6. Virtues and limitations of molecular dynamics simulations in small-scale mechanics

It is well-known that the spatial and temporal scales in MD simulations are very different from those in experimental techniques due to the restrictions in the technique and computational resources. The samples in current MD simulations typically contain up to tens of million atoms, which corresponds to a ~40 nm-diameter, 120 nm-tall nano-pillar. The typical simulation duration (usually tens of nanoseconds), the cooling rate (as high as \(10^{10}\) K/s and above), and the strain rate (on the order of \(10^7\) s\(^{-1}\)) are several orders different than those of experiments. These limitations generally prevent a quantitative comparison between simulated and experimental results, which should not be the objective of MD simulations. For example, it has been shown that a higher strain...
rate in MD simulations often leads to a higher yield strength in materials [34]. Hence, to interpret simulation results, one should mainly focus on the major mechanistic features and trends in the behavior of the samples. If the simulation and experimental results follow the same trend, it would be plausible to use these simulations to reveal the underlying atomistic mechanisms, which are otherwise not obtainable via experimental techniques [35,36]. Based on these guiding principles, MD simulations have been extensively employed, together with experiments, to reveal valuable insight into complicated mechanical properties and behaviors, such as shear banding, crack initiation/propagation, and elastic buckling in a variety of metallic glass and nanoglass systems [35–45].

3. Results

3.1. TEM microstructure and elemental analysis

TEM images and analysis of as-sputtered and annealed Zr-Ni-Al are presented in Fig. 2. The film used for this analysis was sputtered for ~20 h to a thickness of ~15 μm. We confirmed this sample to be amorphous, evidenced by the presence of diffuse rings in the diffraction pattern (Fig. 2(a)), as well as the lack of any observable ordering in the high-resolution TEM image (Fig. 2(b)). Energy-dispersive x-ray spectroscopy (EDS) in the TEM was conducted on the cross-section of the as-sputtered film at various distances away from the substrate to determine the stoichiometric ratio of each component and to assess whether sputtering induced any variations in chemical composition with deposition time. The chemical composition based on the EDS data is plotted in Fig. 2(c) and shows that chemical composition is not a function of distance away from the substrate, which indicates that the sputtering process is consistent over time. The horizontal lines shown in Fig. 2(c) are plotted at the average composition for each element, with the legend displaying these average composition values with the standard deviation in that measurement. This plot implies that less than 2 at. % of carbon and oxygen are present in the thin film lamella sample, with the average stoichiometry of Zr/Ni/Al being Zr55Ni29Al16.

The microstructure of annealed samples was analyzed by TEM to ensure that crystallization and oxidation had not occurred; these TEM results are shown in Fig. 2(d)–(g). The TEM image of an entire nano-tensile specimen (Fig. 2(e)) reveals that an amorphous microstructure was retained upon annealing, as evidenced by the diffuse rings in the diffraction pattern (Fig. 2(d)) and the uniform contrast dark-field image (Fig. 2(f)). TEM analysis on post-tension samples indicated no evidence of crystallization upon mechanical deformation and no changes in the amorphous structure observable by TEM. As measured by EDS, the relative amounts of each element after annealing are shown in the chart in Fig. 2(g) and reveal a slightly greater carbon and oxygen content compared with the as-sputtered sample (Fig. 2(c)) with both amounts <10 at. %. This increased carbon and oxygen content stems from extensive SEM imaging during tension experiments and a small surface oxide layer from air exposure. The signal from these surface atoms is amplified for the nano-tensile specimen because of their high surface-to-volume ratio and the increased sensitivity of EDS to surface atoms. EDS analysis also revealed ~2 at. % Ga present in the annealed specimens, most likely caused by the Ga⁺ ions in the FIB, with a higher concentration of Ga near the sample surfaces where the ion beam came in direct contact with the sample to remove material, as shown in Figure A.4 of Appendix A. The amount of ~2 at.% Ga is likely an upper bound for the actual amount of Ga present in the sample because EDS is more sensitive to surface atoms. The average stoichiometry of Zr/Ni/Al in the annealed nano-tensile specimens corresponds to Zr56Ni30Al24 (Fig. 2(g)), which is slightly different than that of the as-sputtered film, which was Zr55Ni29Al16 (Fig. 2(c)). This difference in stoichiometry may be caused by a slight preference for etching certain elements in the XeF₂ and FIB etching steps. All specimens underwent the same etching procedure, so these effects should be consistent among all the nano-tensile specimens.

3.2. Nano-mechanical experiments

Figs. 3 and 4 display the tensile stress-strain response of the as-sputtered and annealed samples arranged by specimen dimensions and grouped into four width categories: ~90 nm, ~110 nm, ~150 nm, and ~200 nm. For each width category, Figs. 3 and 4 each show three representative engineering stress-strain curves, one representative true stress-strain curve, and one representative SEM image of a tested specimen around the time of failure. We observed two distinct regimes of mechanical behavior in the as-sputtered: “small” specimens with width categories < ~200 nm failed by pronounced localized necking and reached true strains in excess of 100%. The “large” specimens in the ~200 nm width category failed by shear banding and exhibited marginal ductility. The transition from localized necking (Fig. 3(a)–(c)) to shear banding (Fig. 3(d)) can be seen in the SEM images of the specimens around the time of failure; this transition is even more apparent from the in-situ videos of the tensile experiments. For example, the 212 nm-wide as-sputtered sample (Video 1A and 1B) fails catastrophically via shear banding, and the 114 nm-wide as-sputtered sample (Video 2A and 2B) shows localized necking with the material drawing down to a point.

Supplementary video related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2016.07.050.

The annealed specimens (Fig. 4) also show two distinct regimes of mechanical behavior: the “small” specimen width category < ~110 nm failed by noticeable localized necking and reached true strains around 100%, “large” specimen width categories ≥ ~110 nm failed by shear banding with virtually non-existent ductility. The transition from localized necking (Fig. 4(a)) to shear banding (Fig. 4(b)–(d)) can be seen in the SEM images from the specimens around the time of failure. Analogous to the as-sputtered samples, the transition from localized necking to shear banding is unambiguous in the in-situ videos: the 209 nm-wide annealed sample (Video 3A and 3B) catastrophically shear bands at failure, the 109 nm-wide annealed sample (Video 4A and 4B) shear bands after some post-elastic deformation, and the 93 nm-wide annealed sample (Video 5A and 5B) exhibits localized pronounced necking. We found the main difference between the as-sputtered and the annealed specimens to be the critical transition width at which the mechanical behavior switches from ductility with significant necking to shear banding. For the as-sputtered specimens, this transition occurred somewhere between 150 and 200 nm, and for the annealed specimens, this transition occurred at around 100 nm.

Supplementary video related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2016.07.050.

Beyond these two regimes of mechanical behavior, necking versus shear banding, we also observed differences within each regime of mechanical behavior as a function of specimen width. For example, the annealed specimens in width categories ≥ ~110 nm all failed by shear banding, with an accompanying loss of ductility for larger and larger samples. As measured by engineering plastic strain, the ~110 nm annealed specimens exhibited 3.2% more plasticity than the ~150 nm annealed specimens, which exhibited 35% more plasticity than the ~200 nm annealed specimens. The shear-banding mechanism is not suppressed in samples of widths
above the critical dimension but may require higher forces to initiate when specimen widths approach the critical dimension. A similar trend was observed in the necking regime for the as-sputtered specimens: all as-sputtered specimens in width categories <200 nm failed by localized necking, with smaller specimens exhibiting more plasticity. For example, as measured by engineering plastic strain, the ~110 nm as-sputtered specimens exhibited 45% more plasticity than the ~150 nm as-sputtered specimens (Fig. 3).

The summary of measured mechanical properties of the as-sputtered and annealed specimens is displayed in Fig. 5. Again, we grouped the mechanical properties by specimen width into categories of ~90 nm, ~110 nm, ~150 nm, and ~200 nm. Some natural variation in specimen size for each category was caused by the FIB fabrication; this variation is represented by the horizontal error bars in Fig. 5, which correspond to the standard deviation within each size grouping. The vertical error bars indicate the standard deviation in each measured mechanical property within each category of specimen width. We quantified the ductility in the specimens by measuring the plastic strain (ε_p), defined as the total strain at fracture minus the strain at the yield point. Fig. 5(a) contains the engineering plastic strain, ε_p, defined as the total strain at fracture minus the strain at the yield point. Fig. 5(a) contains the engineering plastic strain, ε_p, defined as the total strain at fracture minus the strain at the yield point. ε_p, which is sensitive to necking; the specimens with ε_p ~100–150% all exhibited obvious necking, while specimens with ε_p < ~10% exhibited almost no necking with failure by shear banding.

Measures of strength are included in Fig. 5(c) for yield strength, σ_y, and Fig. 5(d) for ultimate tensile strength, UTS. It appears that the yield strength does not show a significant dependence on specimen size, but was highly influenced by annealing: the as-sputtered specimens exhibited on average $\sigma_y = 1.26 \pm 0.08$ GPa and the annealed specimens exhibited on average $\sigma_y = 1.51 \pm 0.11$ GPa, which indicates that annealing resulted in a ~20% increase in yield strength. The UTS appears to increase dramatically with annealing and with increasing the size of the annealed specimens; however since the UTS was calculated from engineering stresses, it is dramatically higher for samples that did not neck. Necking leads to a significant decrease in the cross-sectional area in the necked region, which means the sample is not able to accommodate total load as effectively as a sample that fails without such a localized narrowing. The UTS is commonly a more representative reflection of whether the samples undergo necking (low UTS) or fail by shear banding without necking (high UTS).

Fig. 5(e) contains the yield strain, ε_y, defined as the total strain at fracture minus the strain at the yield point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
processing conditions. The average yield strain for all samples is 3.79 ± 0.59%. The consistency of the yield strain amongst all specimens indicates the elastic limit of this metallic glass is purely an intrinsic property that is not dependent upon specimen size, fabrication method (sputtering), or post-processing (annealing). As elastic modulus was measured as the slope of stress-strain curve up to the point of yielding, or simply the yield strength divided by the yield strain, this consistency in yield strain also indicates that any changes in the elastic modulus are due almost entirely to changes in yield strength, not yield strain. The elastic modulus measurements are shown in Fig. 5(f) and are also roughly independent of specimen size, with the average modulus of 38.3 ± 3.84 GPa for the as-sputtered specimens and 44.6 ± 6.74 GPa for the annealed specimens, which represents a ~17% increase upon annealing. This increase is consistent with the ~20% increase in yield strength of Fig. 5(c). A large standard deviation indicated by the error bars in the elastic modulus measurements is common in uniaxial tension experiments at the nanoscale because the modulus is measured from the slope of the loading portion of the nanomechanical data [46–48], which is susceptible to experimental artifacts like a slight misalignment between the grips and the sample, an imperfect initial contact, and the atomic-level roughness on the tensile grips and specimen ends. These relative changes in the modulus are useful for showing the general trend of modulus increasing by ~17% upon annealing; the absolute values of the measured moduli are likely lower than the actual moduli because of these artifacts.

3.3. Synchrotron X-ray diffraction

To shed light onto the emergence of substantial ductility in excess of 100% true strain in the as-sputtered nano-sized Zr-Ni-Al metallic glass and the dramatic changes in mechanical response upon annealing, we conducted synchrotron XRD measurements on the as-sputtered and the annealed Zr-Ni-Al metallic glass samples. Fig. 6(a) displays the resultant structure function $S(Q)$ as a function of the scattering vector Q, which contains noticeable changes in the first and second peaks between the as-sputtered and annealed samples. Fig. 6(b) shows the zoomed-in first peak, which increases in intensity by 7.4% from $S(Q_1) = 2.425$ in the as-sputtered sample to $S(Q_1) = 2.604$ in the annealed sample and shifts by 1.7% from $Q_1 = 2.597$ Å$^{-1}$ in the as-sputtered sample to $Q_1 = 2.641$ Å$^{-1}$ in the annealed sample. Q_1 is inversely proportional to the mean atomic spacing [49], which implies that a larger Q_1 in the annealed sample corresponds to a smaller average atomic spacing compared with the as-sputtered sample. The position of Q_1 is related to the mean atomic volume; the variation in volume upon annealing can be estimated according to Yavari et al. [50] by,

$$
\frac{V_{\text{annealed}}}{V_{\text{as-sputtered}}} = \left(\frac{Q_{1\text{ as-sputtered}}}{Q_{1\text{ annealed}}}\right)^3
$$

where V_{annealed} and $V_{\text{as-sputtered}}$ are the mean atomic volumes in the annealed stated and as-sputtered states, respectively. Using Equation (1) with the measured values $Q_1\text{ as-sputtered} = 2.597$ Å and $Q_1\text{ annealed} = 2.641$ Å, we calculate a ~4.9% lower atomic volume in the annealed sample compared with the as-sputtered sample, indicative of a significant reduction in free volume due to annealing. Fig. 6(c) contains the second peak in $S(Q)$, which increases in intensity by ~1.6% from $S(Q_2) = 1.210$ in the as-sputtered sample to $S(Q_2) = 1.230$ in the annealed sample, as well as a peak split caused by the annealing giving rise to an additional peak at ~5.2 Å$^{-1}$, which reflects enhanced local ordering. The heights of the higher order peaks in $S(Q)$ decay rapidly as Q increases, which renders measurements of relative changes inaccurate.

Fig. 6(d) displays the reduced pair distribution function $G(r)$, defined as $G(r) = 4\pi r \rho_0 [g(r) - 1]$, where r is the distance, ρ_0 is the average number density, and $g(r)$ is the pair distribution function. The pair distribution function $g(r)$ tends to 0 at small r because atoms cannot overlap, which forces $G(r)$ to behave as $-4\pi r \rho_0$ as $r \to 0$. At low r, the slope of $G(r)$ is proportional to the average number density of the material. We measured the slope of $G(r)$ for $r < 2.25$ Å (Fig. 6(e)) and found it to increase by 7.2% as a result of the annealing, which corresponds to a 7.2% increase in density and a concomitant loss of free volume from annealing. Fig. 6(f) contains a zoomed-in region of $G(r)$ focused on the peaks corresponding to the first nearest neighbor shell of atoms. These peaks appear to undergo significant changes from ex-situ annealing and are important in understanding changes in short-range order. In the as-sputtered state, the main peak at ~3 Å is split into two maxima: one sub-peak at ~2.7 Å and another sub-peak at ~3.2 Å. Upon annealing, the first sub-peak remains at ~2.7 Å and increases in intensity by 37.3% from $G(0) = 0.984$ in the as-sputtered state to $G(0) = 1.351$ in the ex-situ annealed state, while the second sub-peak at ~3.2 Å is largely unchanged, increasing marginally from $G(0) = 2.089$ in the as-sputtered state to $G(0) = 2.098$ in the annealed state. This indicates a change in the types of atoms within the nearest neighbor shell, where atoms associated with bond lengths of ~2.7 Å become more prevalent and atoms associated with bond lengths of ~3.2 Å exhibit no significant change. Based on the atomic radii of each constituent in the Zr-Ni-Al metallic glass, metallic bond lengths can be calculated [51], with results shown in Table 1, and denoted by the dashed lines in Fig. 6(f). This plot reveals that upon annealing, the Ni-Al and Zr-Zr bonds become more prevalent because the first sub-peak located at around the Ni-Al bond distance intensifies and the second sub-peak shifts closer towards the Zr-Zr bond distance. Zr atoms represent the majority of all atoms in the Zr-Ni-Al glass in this work, with Ni and Al being the minority atoms; the observed changes in bond prevalence suggest that upon annealing the minority atoms (Ni and Al) come together significantly while the majority atoms (Zr) also come together slightly. This leads the atomic-level structure in the annealed state to contain more minority-minority (Ni-Al) and majority-majority (Zr-Zr) atom interactions but less majority-minority (Zr-Al or Zr-Ni) atom interactions.

The peaks in $G(r)$ located beyond the first main peak also change considerably as a result of annealing. Table 2 summarizes the peak positions of these medium-range order (MRO) peaks in the as-sputtered and annealed samples and shows that (1) all peaks shift to shorter distances (by ~1%) consistent with an overall densification, and (2) the intensity increases by ~18–48%, which corresponds to more atoms at certain set radial distances and fewer atoms distributed randomly. These measurements imply that annealing leads to a dramatic increase in coordination number and medium-range order.

3.4. Molecular dynamics simulations

We employed molecular dynamics (MD) simulations to gain insight into the mechanisms of annealing-induced atomic ordering and structural relaxation revealed by the synchrotron XRD measurements. Due to lack of long-range order in metallic glasses, their atomic structure can only be characterized in a statistical manner. Indeed, the structure factor and pair distribution function obtained experimentally are one-dimensional entities indicating the possibility of finding another atom at a distance r from a given central atom. In contrast, MD simulations are able to reproduce the atomistic configuration of metallic glasses and characterize their three-dimensional structure, which is not otherwise possible experimentally. Hence, molecular dynamics is almost a unique
technique in exploring the correlation between microstructure, atomic-level details, and mechanical behavior of metallic glasses under different conditions. Here, we investigated the effect of structural relaxation on the deformation and failure mode of metallic glasses by adjusting the sample cooling rate, and the specific contributions of thermal energy by adjusting the annealing time at a sub-T_g temperature. We also investigated the size effect by performing simulations on samples with different diameters (details of our simulations and sample preparation are provided in the Methods section).

Fig. 7(a) shows the engineering stress-strain curves at room temperature (300 K) for the glassy specimens obtained with different cooling rates of 10^{10} K/s to 10^{13} K/s, in order of magnitude increments. For each of these samples, Fig. 7(b-e) present the snapshots of atomic von Mises shear strain, $3\varepsilon_{VM}$, calculated at different stages of the applied strain, ε, with respect to the unloaded sample. The loading stage of each snapshot is indicated by an open circle in the stress-strain curve of the corresponding cooling rate in Fig 7(a). According to Fig. 7(a), the sample with the cooling rate of 10^{10} K/s exhibits a pronounced drop in the stress level after the ultimate tensile strength (UTS); this can be attributed to formation and propagation of a dominant shear band as seen in Fig. 7(b), which implies a brittle failure mode at room temperature in the glassy sample obtained with the slowest cooling. In contrast, Fig. 7(a) also demonstrates that increasing the cooling rate above 10^{10} K/s leads to an altering of the deformation mode toward more ductile (plastic) behavior and almost an ideal plastic flow in the sample formed with the cooling rate of 10^{13} K/s. This is in agreement with Fig. 7(c-e), indicating a homogeneous distribution of atomic deformation in these samples. Hence, Fig. 7(a-e) clearly

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Ni</td>
<td>2.492</td>
</tr>
<tr>
<td>Ni-Al</td>
<td>2.678</td>
</tr>
<tr>
<td>Zr-Ni</td>
<td>2.848</td>
</tr>
<tr>
<td>Al-Al</td>
<td>2.864</td>
</tr>
<tr>
<td>Al-Zr</td>
<td>3.034</td>
</tr>
<tr>
<td>Zr-Zr</td>
<td>3.204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak location in $G(r)$</th>
<th>Peak intensity in $G(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-sputtered</td>
<td>Annealed</td>
</tr>
<tr>
<td>5.24</td>
<td>5.19</td>
</tr>
<tr>
<td>7.64</td>
<td>7.59</td>
</tr>
<tr>
<td>10.2</td>
<td>10.1</td>
</tr>
<tr>
<td>12.6</td>
<td>12.4</td>
</tr>
</tbody>
</table>
shows a transition in the room-temperature deformation and failure mode from localized shear banding (in the sample formed with the slowest cooling rate) to homogeneous plastic flow (in samples formed with faster cooling rates).

We further consider the effect of cooling rate on atomic structure by investigating the SRO clusters and average potential energy per atom. Fig. 7(f) demonstrates that a faster cooling rate leads to a more disordered atomic structure as evidenced by a decrease in the fraction of Al-FI clusters and by an increase in the average atomic potential energy of the system at room temperature. In other words, increasing the cooling rate results in a glass with a less “relaxed” structure consisting of more “liquid-like” clusters (i.e. excess free volume with irreversible dynamics). This reduction in full-icosahedra clusters at faster cooling rates corresponds to a destruction of the stiff backbone of the glass, which may be a key factor responsible for the homogeneous plastic deformation observed in samples formed at higher cooling rates.

We performed further simulations to investigate the effect of sub-T_g annealing on the structure and mechanical properties of the metallic glass. To this end, we selected the sample obtained with the cooling rate of 10^{13} K/s, whose tensile deformation commenced in a homogeneous fashion (see Fig. 7(a,e)). The annealing temperature in the simulation was selected as 850 K, which is ~80% of the MD-determined T_g for this glass. We chose this annealing temperature to be consistent with the experimental annealing conditions performed at ~80% of the experimental T_g taken from literature [20]. The T_g of the MD-simulated system was determined by considering the variation in the average atomic potential energy as a function of temperature during quenching and finding the temperature at which there was a change in the slope, as shown in Fig. A.3 of Appendix A. The annealing simulation was conducted for up to 400 ns; the average potential energy per atom and the fraction of Al-centered full-icosahedra clusters were monitored during the annealing process. Fig. 8 illustrates the effect of annealing on the mechanical properties and atomic-level structure of the simulated Zr-Ni-Al glass. We observe that annealing the sample that was originally formed at a cooling rate of 10^{13} K/s leads to a 77% increase in the ultimate tensile strength after 200 ns of annealing time (Fig. 8(a)) and shifts the mechanical deformation from homogeneous extension of the as-quenched sample to brittle behavior and shear banding, as
Fig. 8. Molecular dynamics simulations on the effect of annealing at $T = 850\, \text{K}$ (80% of simulated T_g) on the mechanical behavior and atomic structure of Zr-Ni-Al metallic glass specimens with diameters of 40 nm and heights of 120 nm. (a) Tensile engineering stress-strain response of the initial as-quenched sample formed with a cooling rate of $10^{13}\, \text{K/s}$, after annealing for 200 ns, after annealing for 400 ns, and for comparison the sample formed with a cooling rate of $10^{10}\, \text{K/s}$. (b-c) Visualization of atomic von Mises shear strains of the samples annealed for (b) 200 ns and (c) 400 ns. (d) Structural evolution of the metallic glass during annealing at 850 K as measured by the average atomic potential energy (PE) of the system (left axis) as well as the fraction of Al-centered full-icosahedra clusters (right axis).

illustrated in Fig. 8(b)-(c). Fig. 8(a) also includes the stress-strain responses of the as-quenched samples originally formed at cooling rates of 10^{13} and $10^{10}\, \text{K/s}$, which are provided to show that annealing the sample originally quenched at a cooling rate of $10^{13}\, \text{K/s}$ leads to a stress-strain response similar to that of the as-quenched sample formed at a cooling rate of $10^{10}\, \text{K/s}$. Fig. 8(d) shows a plot of average potential energy per atom and percentage of Al atoms centered in full icosahedron, i.e. Al-FI, versus annealing time. This figure illustrates that increasing annealing time from 0 ns to 400 ns brings about atomic ordering of the system, as evidenced by a 0.2% (-0.01 eV) decrease in the average potential energy per atom and a 38% increase in the fraction of Al atoms located in the central position of full-icosahedra clusters. These results support that slower cooling rates and greater annealing times lead to the creation of samples with more relaxed and well-ordered microstructures, which exhibit stronger and more brittle behavior, than samples with more disordered structures obtained by cooling at faster rates, which exhibit more ductile responses.

Previous studies have shown that the structural relaxation during sub-T_g annealing is mainly attributed to localized atomic rearrangements (i.e. β-relaxation), which are manifested in processes such as enhancement in short-range ordering and/or annihilation of free volume [52,53]. In general, the temperature dependence of β-relaxation follows the Arrhenius relation [53]. Previous experimental and theoretical studies suggested that the activation energy of such processes is on the order of 0.1–1 eV [54–56]. Hence, the estimated relaxation time for such processes at $0.8T_g$ is on the order of sub-nanosecond to tens of nanoseconds.
This implies that the 400 ns time used in our annealing simulations at 0.8 Tg should allow ample structural relaxations of the metallic glass samples through localized β-relaxation. This is the primary reason why there is the same trend in the strengthening and embrittlement between our simulations and experiments.

Fig. 9 illustrates how sample size can have a significant influence on mechanical response. In this figure, MD simulations of tensing different diameter nano-cylinders reveal that atomic von Mises strains localize into an obvious shear band in the 40 nm diameter sample (Fig. 9(b)). As the sample diameter is reduced to 20 nm the deformation becomes less localized but still exhibits shear banding (Fig. 9(c)), decreasing the sample diameter to 10 nm changes the failure mechanism to necking (Fig. 9(d)), and reducing the sample size to 5 nm leads to even more pronounced necking (Fig. 9(e)). Fig. 9(a) shows the simulated engineering stress-strain data and also demonstrates the shift in failure mechanism as the 40- and 20-nm diameter samples exhibit a sudden drop in stress after yielding due to shear band formation, while the 10- and 5-nm diameter samples exhibit gradual decreases in stress after yielding due to the gradual decrease in cross-sectional area of the necked region. The substantial fluctuations in the stress-strain response of the 5 and 10 nm samples after yielding are likely caused by the stronger effect of atomic fluctuations in the small samples after each localized atomic yielding event.

4. Discussion

4.1. Structural relaxation effects

The ductility observed in the as-sputtered metallic glass specimens is substantial, attaining true strains of ~150% and exhibiting visible tensile necking down to a point even in specimens as large as ~150 nm. This represents a significant departure from findings in previous studies, see for example [8,9,12,13] where nano-tensile metallic glass samples were formed by a variety of other non-sputtering processes. This departure may be attributed to the relatively unexplored effect of the sputtering process on the microstructure of the formed metallic glass. Previous studies on small-scale tension of metallic glass nanopillars have utilized various non-sputtering fabrication methods, including thermal-plastic moulding which led to almost no plasticity even for sub-100 nm Pt57.5Cu14.7Ni53.3P22.5 specimens [12], electrodeposition which led to plastic strains of 2% in ~100 nm Ni80P20 specimens [13], and copper-mold casting which led to plastic strains of ~23–45% for 100 nm Zr52.5Cu17.9Al14.5Ni14.6 specimens [8]. One study on the mechanical properties of small-scale sputtered metallic glass was conducted on Pd77Si23 metallic glass under compression, which revealed a suppression of failure localization into catastrophic shear bands for specimens with diameters up to 400 nm [57]. This 400 nm diameter is substantially larger than typical diameters reported for the size-induced brittle-to-ductile transition, on the order of 100 nm, and is consistent with the compressive deformability observed in our Zr-Ni-Al samples with diameters up to 555 nm. A full discussion on these compression results is provided in Appendix A. This suggests that sputtering may be a method of metallic glass fabrication to create ductile metallic glasses of a variety of chemical compositions.

The results of this work reveal that the observed substantial ductility in the as-sputtered nano-sized Zr-Ni-Al stems from the sputtering process creating a metallic glass in a substantially un-relaxed structural configuration with a large amount of residual free volume (i.e. liquid like atomic clusters with irreversible dynamics) in the vitrified state. Annealing these sputtered metallic glasses increased the atomic mobility and induced a relaxation process with structural rearrangements that annihilated some excess free volume, according to free volume theory [58]. This work demonstrates that the original metallic glass fabrication method i.e. sputtering, and post-processing i.e. annealing, dramatically affect the atomic-level structure, and hence, mechanical behavior, and failure mode in small-scale metallic glasses. This suggests that the design of systems containing metallic glasses must carefully consider the desired mechanical properties and select the

Fig. 9. Molecular dynamics simulations on the effect of sample size (i.e. nanopillar diameter) on the mechanical behavior of the Zr-Ni-Al metallic glass. The height of the nanopillars was selected such that the aspect ratio was constant at a value of 3 for height to diameter. (a) Tensile engineering stress versus strain for samples with diameters denoted in the legend (b-e) Analysis of the atomic von Mises shear strain (ε\text{VM}) of the nanopillar samples with the diameters of (b) 40 nm, (c) 20 nm, (d) 10 nm, and (e) 5 nm indicates a transition from brittle shear banding to ductile necking by decreasing the sample size.
higher strain rates used in the MD simulations (4 × 107 s−1 in MD compared to 1 × 10−3 s−1 in experiments). Faster strain rates have been associated with an increased propensity towards shear banding and a loss of ductility [34,61,62]. Besides, this smaller diameter for the brittle-to-ductile transition in simulations has also been attributed to the lack of surface imperfections such as surface roughness in simulated metallic glass samples as compared to experimental samples [26].

The size-induced ductility may be explained, in part, by surface effects: as the sample becomes smaller, the effect of the surface becomes more significant, as reported in the work of Chen et al. [13]. Surface atoms contain broken bonds and thus cannot form clusters with high local symmetries, such as full icosahedra, which means there is zero concentration of full icosahedra on surfaces and surfaces are structurally liquid. As the sample becomes smaller, the fraction of total atoms in this highly disordered surface state becomes larger, which means their contribution to mechanical behavior also becomes larger. The novelty of this work is that our results provide a direct link between the disorder in the atomic-level structure, quantified by synchrotron XRD experiments, and the commencement of deformation and failure, as well as confirmation that a larger fraction of atoms in the highly disordered state of surface atoms contributes to the ubiquitously observed emergent ductility in nano-sized metallic glasses.

The surfaces of the metallic glass specimens in this study may also be important in explaining the size-induced ductility because the specimens were fabricated using Ga+ ion irradiation from a FIB. The influences of this Ga+ ion irradiation on small–scale specimens have been thoroughly explored in the last decade [63–65]. In particular, ion beam irradiation of metallic glasses has been shown to introduce defects, increase free volume, and cause the growth of nanocrystallites in the amorphous matrix [66–68]. We did not observe any nanocrystallites in the TEM analysis of the Zr55Ni25Al20 specimens; it is difficult to accurately assess defects in amorphous materials or changes in free volume with TEM. According to Monte Carlo based simulations conducted with The Stopping and Range of Ions in Matter (SRIM) software, glancing angle irradiation of Zr55Ni25Al20 with an assumed bulk density of 6.33 g cm−3 by 30 keV Ga+ ions results in ~78% of the implanted Ga present within the first 10 nm of the free surface of the specimen, and ~98% of the implanted Ga present within the first 20 nm of the free surface of the specimen. This implies that the majority of implanted Ga is located very close to the surfaces of specimens. The detailed plot of Ga ion penetration depths calculated by SRIM is included in the Appendix Fig.A.4. It is possible that the presence of Ga near the surfaces and Ga bombardments from FIB may influence the mechanical response of nano-sized metallic glasses, which have been shown to exhibit enhanced ductility and a slight suppression of shear banding upon FIB-induced Ga-ion irradiation [11–13]. This effect would be more pronounced for smaller specimens, which would have a correspondingly larger fraction of the specimen exposed to FIB; therefore FIB processing may be a contributing factor in the observed size effect. However, because samples of the same size were fabricated with identical FIB conditions, the differences between the as-sputtered and annealed sample sets are likely not due to FIB effects. As discussed in Section 2.1, the annealing was performed from a larger ~3 µm thick film of material prior to any FIB exposure and then after annealing the FIB was used to fabricate specimens. This methodology prevented any possible annealing-induced changes to the resultant FIB damage. This makes a direct comparison between Fig. 3 (samples FIB-fabricated from the as-sputtered film) and Fig. 4 (samples FIB-fabricated from the annealed film) justified. The large difference in ductility between the samples shown in Figs. 3 and 4 are due to differences from the samples being in an as-sputtered or annealed state and likely cannot be attributed to FIB processing. Nevertheless, it should be noted that as all specimens in this study were FIB-fabricated, there is no reference state without FIB exposure. Therefore, even the differences between specimens could be influenced by the disorder introduced by the FIB and the limits of disorder allowed by the material. The possible effects of FIB do not significantly influence the takeaway message of this work, which is to demonstrate a comparison between the as-sputtered and annealed small-scale metallic glass specimens. This comparison illustrates the annealing leads to an increase in atomic-level ordering and loss of free volume, which leads to a loss of ductility. In this work, we are less interested in the absolute mechanical response and are focused on the relative comparison between the as-sputtered and the annealed specimens, which experienced identical FIB exposure.

Several previous studies reported a range of explanations for the dependence of metallic glass ductility on sample size. For example, Chen et al. and Volkert et al. [13,57] have rationalized the observed size effect in terms of energetics and postulated that for a sample with a characteristic dimension d, the total elastic strain energy stored in a sample scales with the sample volume or −d3, while the surface energy that a shear band has to overcome to propagate scales with the cross-sectional area of the sample or −d2. Therefore below a critical diameter, the elastic energy (−d3) is less than the shear banding energy (−d2) and it is energetically unfavorable for a shear band to form and propagate. Another reason for size-induced ductility is that the ductile specimens in this study may be smaller than the critical size of a shear band. One study suggested that for a shear band to fully develop and propagate, its nucleus would have to be ~50–500 nm [2] and another study suggested that embryonic shear bands, that is shear bands prior to their catastrophic propagation, require a certain running distance in order to become critical [8]. Small specimens, like those studied in this work, may not provide a sufficient nucleation zone or running distance to allow for propagation of shear bands. Others have attributed the observations of size-induced ductility in metallic glasses to a competition between the energy required for crack-like shear band propagation and that for homogeneous flow [8,57]. Volkert et al. and Jang et al. argue that analogous to Griffith’s criterion for crack-propagation, the critical stress necessary to propagate a pre-existing crack-like shear band is [9,57,69]: σ = (1−ν)/(2E) where σ is the shear band energy per unit area, E is the elastic modulus, α is the aspect ratio (height/diameter) of the sample, and d is the sample diameter. Thus
the critical stress necessary to propagate a shear band decreases with increasing sample size. In larger samples, this critical stress is less than the stress for driving homogeneous flow, so shear bands are inevitable. In smaller samples, like those of the current work, the critical stress for shear bands is greater than the stress for homogeneous flow, so it is favorable for many shear transformation zones to activate throughout the sample, resulting in more homogeneous deformation and ductility [9,57].

In the context of the described existing state of the art knowledge on deformation and energetics of nano-sized metallic glasses, our work demonstrates that the critical size for the emergence of ductility is not a fixed value for a given metallic glass; it is a strong function of the free volume distribution and the atomic-level energy state. By adjusting the fabrication method and post-processing steps, it is possible to push this critical size to induce ductility to even larger length scales. The parameters yet to be explored include changing the metallic glass composition and modifying the sputtering conditions, like power, argon gas pressure and flow rate, RF versus DC sputtering, co-sputtering Zr, Ni, and Al instead of sputtering from an alloyed target, etc. Optimizing these parameters along with others that have been shown to increase ductility, such as ion irradiation [12,70] and utilizing chemistries with a low ratio of the elastic shear modulus to the bulk modulus [14,15], may allow for the formation of a grossly disordered metallic glass with exceptional ductility.

Metallic glasses were originally discovered by rapidly quenching metallic alloys to suppress crystallization and bring about a disordered arrangement of atoms. We were able to achieve unique properties in nano-sized metallic glasses by increasing their atomic-level disorder via sputter deposition. Forming metallic glasses by sputtering allowed us to increase the effective quenching rate and to achieve one of the highest-yet reported ductility values in small-scale metallic glasses, which sets them even further apart from crystalline metals and alloys. Controlling the atomic-level disorder enables us to elicit new mechanical properties, such as enhanced ductility, while maintaining the high strength and elasticity intrinsic to metallic glasses.

5. Conclusions

In-situ tensile experiments conducted inside a SEM demonstrate substantial ductility in nano-sized sputtered Zr-Ni-Al metallic glasses. The observed ductility is larger than that reported for other metallic glasses, reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in relatively large samples, of widths up to 150 nm. The ductility was highly dependent on specimen size and annealing conditions, with the greatest ductility of >150% true plastic strains, and necking down to a point of ~150 nm points towards sputtering as a promising technique for fabricating metallic glasses, particularly as thin coatings. Sputtering is well suited for deposition of thin coatings, and this work shows that the thinness of a sputtered metallic glass coating has the additional benefit of enhanced size-induced ductility that can be observed at relatively large critical dimensions, such as ~150 nm shown in this work. Future work will be aimed at optimizing the sputtering parameters and other conditions that have been shown to influence ductility, such as utilizing systems containing a low ratio of the elastic shear modulus to the bulk modulus [14,15] and post-processing by ion irradiation [12,70]. Such a thorough exploration of parameter space will lead to developing processing techniques for the creation of optimally disordered metallic glasses with maximized ductility at even larger critical dimensions. Creating such ductile metallic glasses at larger length scales would increase the feasibility of utilizing metallic glasses in structural and technological applications, which require not only the high strength, elasticity, and corrosion resistance intrinsic to metallic glasses, but also the tensile ductility, which has been very difficult to achieve.

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation through R.J.'s Graduate Research Fellowship under grant DGE-1144469, the U.S. Department of Energy through J.R.G.'s Early Career Research Program under grant DE-SC0006599, NASA's Space Technology Research Grants Program through J.R.G.'s Early Career Faculty Grant under grant NNX12AQ46G, and the National Academies Keck Futures Initiative under grant NAKFI-ANT1. The authors thank Jonathan Thompson for help with annealing using the Carbolute tube furnace in the Lewis Group at Caltech, David Chen for helpful discussions, and the Atwater Group at Caltech for use of the sputter deposition system. The authors also thank the Kavli Nanoscience Institute (KNI) at Caltech for support and availability of cleanroom facilities. The authors also gratefully acknowledge the financial support from the Agency for Science, Technology and Research (A*STAR), Singapore and the use of computing resources at the A*STAR Computational Resource Center, Singapore. M.J.Z. would like to thank Dr. R. Tavakoli for valuable discussion and Prof. H.W. Sheng for his valuable help and providing the required EAM potential. Q. Z. would like to thank and Hongbo Lou, Fei Zhang and Yang Ren for help with synchrotron x-ray diffraction experiments and acknowledge the financial support from the DOE-BES X-ray Scattering Core Program under grant number DE-FG02-99ER45775 and from the National Natural Science Foundation of China under grant number U1530402.

Appendix A. Supplementary information

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2016.07.050.

References

23. H. Cheng, S. Sheng, School of Physics, Astronomy & Computational Sciences, George Mason University, Fairfax, VA 22030 (Potential provided through private communications), (n.d.).