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1.  Introduction

In 2006, the first iron-based superconductor (FeSC) LaFePO 
(1 1 1 1) is reported by Hosono’s group [1]. In 2008, the break-
through came with the fluoride doped arsenide LaFeAsO1−xFx 
(1 1 1 1) with the superconducting transition temperature up to 
26 K [2]. After that many families of FeSCs were discovered 
but among which SmFeAsO1−xFx (1 1 1 1) keep the record  
high of the superconducting transition temperature ∼T 55c  K [3]. 
CaFeAsF is another 1 1 1 1-type of FeSC but is oxygen-free. 
It has a ZrCuSiAs-type tetragonal structure in which LaO 
layers in LaFeAsO are replaced by CaF layers [4]. This parent 
compound exhibits pressure-induced superconductivity and 
the maximum Tc is higher than that in LaFeAsO, making it a 
promising candidate as a parent compound for high Tc super-
conductor [5]. Electrons doped into FeAs layers by partial 
replacement of Fe with Co suppress the antiferromagnetic 
state and superconductivity arises. In addition, the electronic 
and magnetic properties of this compound are intermediate 
between those of LaFeAsO1−xFx and Ba(Fe1−xCox)2As2 [6]. 
All these features make CaFeAsF different from other FeSCs. 
However, the investigation on this new 1 1 1 1 type of FeSC 

are greatly restricted due to the difficulties in obtaining sizable 
single crystals.

Knowledge of the anisotropy parameter γ is essential to 
clarify the nature of superconductivity. For the 1 1 1 1 family, 
limited reports are found on oxypnictides LaFeAsO1−xFx [7] 
and SmFeAsO0.8F0.2 [7, 8] and there is a discrepancy in the 
value of γ and also the tendency of temperature dependence. 
In this paper, we performed detailed torque measurements 
on CaFe0.88Co0.12AsF and found that this 1 1 1 1 system is 
more anisotropic compared to 11 and 122 families of iron-
based superconductors where γ stays in the range of 2–3. In 
addition, we estimated the penetration depth λab, which is 
an important characteristic length scale of a superconductor, 
which parameterizes the ability of a superconductor to screen 
an applied field by the diamagnetic response of the supercon-
ducting condensate [9].

2.  Methods

High quality single crystal samples of CaFe0.88Co0.12AsF were 
grown using the self-flux method with CaAs as the flux. The 
details about sample growth and characterization can be found 
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elsewhere[10]. The actual Co level was determined to be 0.12 
through the energy dispersive x-ray (EDX) measurements on 
the as-grown single crystals. The sample for which the data is 
shown in this paper has a mass = ±m 0.12 0.02 mg. Electrical 
resistivity measurements were performed in a physical prop-
erty measurement system (PPMS). Magnetization measure-
ments were performed by using a superconducting quantum 
interference device (SQUID). Out-of-plane torque measure-
ments were performed using a piezoresistive torque magne-
tometer in PPMS. The angle θ is defined as the angle between 
the magnetic field and the c axis of the single crystal.

3.  Results and discussion

Figure 1(a) shows the temperature T dependent in-plane 
and out-of-plane resistivity data ρab, ρc. An upturn behavior 
shows up before the transition to the superconducting state 
for both curves. The onset of the superconducting transition 
appears at 21.7 K and the zero resistivity is reached at 20.4 K.  
The anisotropy parameter γ calculated from the normal state 

resistivity, /γ ρ ρ= c ab, is plotted in figure  1(b), which is 

about 5–6 in the temperature range from 23 to 60 K. This value 
of γ is similar to the anisotropy of normal state resistivity in 
Ba1−xKxFe2As2, which is about 3–6 [11]. The magnetization M  
curves were measured under field-cooled (FC) and zero-field-
cooled (ZFC) conditions with a magnetic field H of 10 Oe 
applied along the ab-plane of the crystal, as shown in figure 2. 
Tc determined from magnetization measurements is 20.5 K, 
which is the same as Tc0 of resistivity measurements.

Figure 3(a) shows the typical angular θ dependent torque 
curve ( )τ θ  of CaFe0.88Co0.12AsF at temperature above Tc with 
an applied magnetic field H of 9 T. The superconducting 
transition temperature is (   ) =T 9 T 15c  K and the data shown 
here is for T   =  30 K. Note that the torque data is reversible 
with increasing (τinc) and decreasing (τdec) angles. Torque τ 
has a θsin 2  angular dependence and can be well fitted by 
τ θsin 20 . It is found that τ0 has a H2 magnetic field depend
ence at T   =  30 K, as shown in figure 3(b). These two features, 
θsin 2  angular dependence and H2 magnetic field dependence, 

are typical behaviors for paramagnetic response τp, since 

τ θ= χ χ−
H sin 2p 2

2c a , where χc and χa are the susceptibility 
along the c and a axes of the crystal [12, 13]. Since χc is 
smaller than χa in FeSCs, [14] the coefficient of θsin 2  term 
is negative, which is opposite to the case of the heavy fermion 
superconductor CeCoIn5 [15] and the cuprate superconductor 
Bi2Sr2−xLaxCuO δ+6 , [16] where χ χ>c a.

The anisotropy parameter is an important quantity for char-
acterization and is essential to clarify the nature of supercon-
ductivity. We examine the anisotropy of CaFe0.88Co0.12AsF by 
studying in detail the torque data for <T Tc. Figure 4(a) shows 
the torque data measured at T   =  16 K and H   =  6 T. A sharp 
peak around 90° is found and there is large hysteresis between 
the torque data measured with increasing and decreasing 
angles (τinc and τdec) as indicated by the arrows. The revers-

ible part of the torque can be obtained by ( )τ τ τ= +rev
1

2 inc dec . 

Note that only τrev reflects equilibrium states, which allows the 
determination of the thermodynamic parameters. Figures 4(b) 

Figure 1.  (a) Temperature T dependent in-plane and out-of-plane 
resistivity data, ρab (left axis), rhoc (right axis). (b) T dependent 
resistivity anisotropy ( / ) /ρ ρc ab

1 2.

Figure 2.  Temperature T dependent normalized magnetization data 
for H  =  10 Oe under both zero-field-cooled (ZFC) and field cooled 
(FC) conditions.

Figure 3.  (a) Typical angular θ dependent torque τ at temperature 
T   =  30 K with a magnetic field H   =  9 T. (e) τ0 versus H2 at T  =  30 K. 
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and (c) plots τrev for the data measured at T  =  16 K and with 
different applied magnetic field. The symbols are data points 
and the solid lines are fitting curves by the following equation,

( )
( ) ( )

∥

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

τ θ θ
φ

πµ λ
γ
γ

θ
θ

γη
θ

= +
−
ε ε

a
HV H

H
sin 2

16

1 sin 2
ln .

ab

c
c

rev
0

0
2

2
2

� (1)

In the above equation, the first term represents the θsin 2  
contribution to the torque signal. The second term describes 
the vortex torque according to Kogan’s model [17] which 
is derived in the frame of the anisotropic Ginzburg–Landau 
regime, where µ0 is the vacuum permeability, λab is the pen-
etration depth in the ab-plane, /γ = m mc a  is the anisotropy 
parameter (mc and ma is the effective mass along the c and 
a axes), ( ) ( ) /θ θ γ θ= +ε sin cos2 2 2 1 2, η is a numerical para
meter of the order of unity, and ∥Hc

c
2 is the upper critical field 

parallel to the c-axis.
We use γ, a and λab as fitting parameters to fit the torque 

data and figures 4(b) and (c) shows the fitting results. Note 
that the contribution from the θsin 2  term becomes more 

evident as the magnetic field increases. We summarize the 
temperature and magnetic field dependence of the aniso
tropy parameter γ in figures 5(a) and (b). It is found that γ 
shows weak temperature and magnetic field dependence. 
At   (   )γ= =�T T11.5 K, 11.5 K 0.5 19.1c , which is similar 
to the result of SmFeAsO0.8F0.2, γ� 23 at �T T0.4 c [8]. So, 
the 1 1 1 1 is more anisotropic in the superconducting state 
compared to 11 and 122 families of FeSCs, where γ stays in 
the range of 2–3 as evidenced by μSR measurements, [18] 
despite the fact that the normal state anisotropy parameter is 
about the same in the 1 1 1 1 and 122 compounds (γ is 5–6 
for the former and 3–6 for the latter). This might suggest 
that in the superconducting state, the electronic coupling 
between layers in 1 1 1 1 is less effective than in the 11 and 
122 families.

Figure 5(c) (right axis) shows temperature dependence 
of the penetration depth λab, which is obtained from fits 
of equation (1) to the torque data. The left axis shows the 
temperature dependence of normalized superfluid density 

( )/ ( )λ λ− −T 0ab ab
2 2 . It is found that ( )/ ( )λ λ− −T 0ab ab

2 2  decreases with 

Figure 4.  Torque data at T  =  16 K. (a) Angular θ dependent torque 
data measured at H   =  6 T. (b) Reversible part of the torque data τrev 
at H   =  6 T. (c) τrev for H  =  1, 3, 5, 7, 9 T. In (b), (c) the solid lines 
are fitting curves by equation (1).

Figure 5.  (a) Temperature T dependence of anisotropy parameter γ.  
(b) The magnetic field H dependence of γ. (c) Right axis: 
temperature dependence of penetration depth λab. Left axis: 
temperature dependence of the normalized superfluid density 

( )/ ( )λ λ− − T0ab ab
2 2 . The dashed line is a fitting curve by equation (2).
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increasing temperature and vanishes when approaching Tc. 
We use the empirical equation,

( )/ ( ) ( / )λ λ = −− −T T T0 1ab ab
n2 2

c� (2)

with n  =  4 to fit our data (see the dashed line) and obtain 
( )λ =0 400 nm. Lower critical field measurements on 

PrFeAsO1−y give ( )λ =0 280 nm [19]. From μSR mea-
surements, ( )λ =0 189 and 195 nm for SmFeAsO0.85 and 
NdFeAsO0.85 [20]; ( )λ =0 254 and 364 nm for LaFeAsO1−xFx 
x   =  0.1 and 0.075 [21]. Our result of λab here is comparable 
with that of other 1 1 1 1 families.

4.  Conclusions

In summary, we performed detailed angular dependent torque 
measurements on CaFe0.88Co0.12AsF. A large paramagnetic 
effect is observed in the normal state. After subtracting this 
paramagnetic contribution to the mixed state, we obtain the 
anisotropy parameter from the mixed state torque data and 
summarized its temperature and magnetic field dependence. 
The value of γ is comparable with other 1 1 1 1 families of 
FeSCs, but much larger than 11 and 122 families of FeSCs. 
The zero temperature penetration depth of CaFe0.88Co0.12AsF 
is also estimated, which is reasonable when compared to the 
value reported for other 1 1 1 1 FeSCs.
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