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trials with favorable safety and immunogenicity
outcomes (40). Future studies will need to address
the minimal doses of mini-HA and adjuvant for
a protective response. Because preexisting immu-
nity may have a profound effect on the breadth of
the response and no animal model recapitulates
the complex preexisting immunity against influ-
enza found in humans, such studies should be
performed in humans (47).

Concluding remarks

We have described the design and characteri-
zation of a series of soluble HA immunogens
solely composed of the HA stem. Although all
selected mini-HAs elicited comparable levels of
antibodies to FL HA, the breadth and protective
ability of the elicited antibodies progressively in-
creased with the structural evolution of mini-HA
configuration. The final candidate—stabilized tri-
meric mini-HA #4900—demonstrated its unique
ability to elicit broad and protective immune re-
sponse in mice and nonhuman primates. It has
been reported (42, 43) that stabilization of respira-
tory syncytial virus F antigen improves immune
response and protection. Our results demonstrate
that the same principle holds for influenza HA and
provide further direction for the design of an
epitope-based, universal influenza vaccine.
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Fractal atomic-level percolation in

metallic glasses
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Metallic glasses are metallic alloys that exhibit exotic material properties. They may have
fractal structures at the atomic level, but a physical mechanism for their organization
without ordering has not been identified. We demonstrated a crossover between fractal
short-range (<2 atomic diameters) and homogeneous long-range structures using in situ
x-ray diffraction, tomography, and molecular dynamics simulations. A specific class of
fractal, the percolation cluster, explains the structural details for several metallic-glass
compositions. We postulate that atoms percolate in the liquid phase and that the
percolating cluster becomes rigid at the glass transition temperature.

reeze a liquid fast enough, and it becomes
a glass, a material that is structurally sim-
ilar to the liquid but incapable of flow. This
concept, albeit not well understood (7, 2), is
so ubiquitous that it holds even for metals
(8). Vitrified metals, or metallic glasses, are a
class of disordered materials with nondirectional

bonding and possess a suite of lucrative mechan-
ical properties, such as high elastic limit and
strength (4). Unlike most crystalline metals and
alloys, metallic glasses earn their name from a
lack of long-range atomic order and the absence
of typical defects, such as dislocations, rendering
their microstructure challenging to conceptualize
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and model. Some studies suggest the existence
of short-range order, for which solute-centered
clusters serve as the building blocks, and medium-
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range order characterized by cluster packing (5-7).
These short- and medium-range packing schemes
inevitably break down over longer coordinates
as a result of spatial incompatibility, and they
do not fully describe the atomic organization
within these complex glasses. The incomplete
understanding of atomic-level structure in glassy
materials has made it challenging to capture the
physics of their response to mechanical defor-
mation. We propose a model that describes a
short-range order and encompasses the long-
range structural details of metallic glasses. The
model has considerable implications for under-
standing glass properties and the origin of the
glass transition.

Diffraction experiments characterize the struc-
ture of amorphous materials by mapping the

atomic neighbor-separation distances and sta-
tistical density distributions. Dissimilar glasses
and liquids commonly possess distinct short-
and medium-range orders due to variations in
chemical bonding, but the atomic structure be-
comes fluid like and nearly indistinguishable
among different glasses beyond the first few
nearest neighbors (8). The similarity of atomic-
level environments in liquids and glasses makes
it difficult to understand how glasses get their
rigidity. Glass rigidity may be related to the jam-
ming of atoms as density increases (9). The
marked difference between the short- and long-
range configurations in glassy systems sets glas-
ses apart from crystals. In contrast to crystals,
simplifying the underlying structure in a glass is
problematic, because the short- and medium-range
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orders do not repeat in a recognizable pattern.
For this reason, no two glasses, produced under
the same conditions and with similar diffraction
patterns, are identical at the atomic level. The
question of how repeatable long-range structures
in glasses can emerge from nonrepeating atomic
clusters remains unanswered.

A

Studies suggest fractal properties in metallic
glasses (10, 1I). Fractal behavior manifests in the
relationship between mass () and volume. For
crystals, this relationship, M(r) ~ 7* (where 7 is
the radius of a region within the material), has a
dimensionality (D) of 3. The dimensionality of
metallic glasses is closer to ~2.5 (II), and any

[ L]

i &%

Fig. 3. Concepts in fractals and percolation. (A and B) Site lattice percolation for p < p. (A) and p > p,
(B). White squares are “occupied,” black squares are “unoccupied,” and blue squares are percolating. (C)
lllustrative example of a lattice made up of Sierpinski gaskets with correlation length &, adopted from (23).
This lattice is fractal over the short range and homogeneous over the long range. (D) MD simulation of the
CugeZrss system at room temperature with full periodic boundaries (Cu, blue; Zr, yellow). (E) CuseZrsa
with all atoms removed, except for those belonging to icosahedrons.

non-integer D corresponds to a fractal (12).
Many naturally occurring random fractals have
D ~ 2.5, including crumpled balls of paper and
thin sheets (13), which are fractals down to the
size of nanoballs of graphene oxide (14). Fractal
concepts may be useful in developing an atomic-
level understanding of amorphous materials,
because they imply underlying order in inher-
ently chaotic and random arrangements. The
specific nature of fractals in metallic glasses is
not obvious, because most mass fractals have
macroscopic pores at large r (e.g., crumpled
paper), and metallic glasses are monolithic ma-
terials. Metallic glasses have packing fractions
close to or exceeding those of close-packed crys-
talline metals (75). The puzzle of how metallic
glasses can simultaneously possess fractal prop-
erties and remain fully dense is unresolved (16).
One possible explanation is that the diffraction
experiments only probe the short-range dimen-
sionality. In this work, we observed a fractal short-
range D < 3 and a homogeneous long-range D = 3
for several metallic glasses, indicating the pres-
ence of a dimensionality crossover at an inter-
mediate length scale.

Previous studies have focused on the principal
(first) diffraction peak only (10, 11). We extended
the analysis beyond the first peak, because the
information contained in diffraction experiments
is spread out in momentum space, and each peak
contains information that represents a part of
the total structure. We conducted in situ high-
pressure x-ray diffraction and full-field nano-
scale transmission x-ray microscopy experiments
on ~40-um-diameter cylindrical samples of
CuyeZr,cAlsBes metallic glass (Fig. 1A). We made
diffraction and sample volume measurements
in situ as a function of hydrostatic pressure in a
diamond anvil cell. We related the scattering
vector (q) from diffraction peak positions to
volume by increasing the hydrostatic pressure
from ~0 to 20 GPa (Fig. 1B). Compared with
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previous methods, using multiple data points
improved accuracy in measuring the exponent
(10). Structural information was sensitive to the
magnitude of the scattering vector. We found
that D ~ 2.51 for qy (the scattering vector from
the first peak position), consistent with previous
experiments on other metallic glasses (10, II).
The value of ~2.64 from g, measurements was
5% higher than that from q, (Fig. 1C). To explore
the repeatability of this finding, we analyzed data
obtained from a Lag,Al;,Cuy; 7Ag, sNisCos metallic
glass (II). First-peak data for both systems had
the same exponent of ~2.5, whereas the ¢, data
for the LagyAl,Cuy; 7Ag, 3NisCos had an exponent
of nearly 3 (Fig. 1C). This shift is greater than the
one observed in the CuygZr,sAlsBes system, and
it supports the observation that a change in the
dimensionality arises from probing different ex-
tents within the atomic structure in momentum
space. Extracting structural information from mo-
mentum space measurements is difficult, because
the information is spread out. Real-space radial
distribution functions (RDFs) are needed, where
peak positions correspond directly to atomic sep-
arations. Background noise and the limited range
of q restrict the accuracy of Fourier transforms
applied to experimental RDFs. Atomistic simu-
lations allow for this type of investigation.

Molecular dynamics (MD) simulations can
replicate the glass structure, but the simulation
time scales (picoseconds) are many orders of
magnitude shorter than in the experiments. We
ensured that the system had sufficient time to
relax at each pressure increment to address
this issue. We held the loading rate constant at
50 GPa/ns (5 x 10" Pa/s), and we allowed the
system to relax for ~0.1 ns to reach thermo-
dynamic equilibrium at each pressure interval.
Higher quench rates in simulations may produce
less relaxed glasses, although their structures
often closely match those produced in experi-
ments (I17-19). The differences in compression
rates result in quantitative discrepancies, but
the qualitative and phenomenological aspects
of the simulations should represent a realistic
physical system. We generated CuygZrs, RDFs
by using two embedded-atom-method force
fields, described by Cheng et al. (FF;) (I8) and
Mendelev et al. (FF,) (19). The neighbor separation—
volume relationship for RDF peaks 7, and 7,
indicated a D of ~2.54, similar to the exper-
imental result, but it transitioned to ~3 between 7,
and 75 (Fig. 2A). We also simulated NigoAlyo, which
exhibited a similar crossover between r; and 7,
(Fig. 2B) (20).

The percolation cluster (2I) is probably the
most relevant fractal model to describe the struc-
ture of metallic glasses. The cluster represents
a disordered system with fractal dimension D
~ 2.52 and appears across many physical sys-
tems (22, 23). Percolation models incorporate
the probability of occupied (p) and empty (1 - p)
sites. At low p values, the system is not fully con-
nected (for example, as with an electrical insu-
lator) (Fig. 3A). The percolation threshold (p.) is
reached when a percolating network forms, al-
lowing incipient conduction. Systems charac-
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terized by large p have many conduction paths
(Fig. 3B). What sets the percolation model apart
is the existence of a correlation length, &, which
characterizes the size of the finite clusters at
concentrations below and above p... The correla-
tion length is defined as the average distance that
spans two sites within the same cluster and has
units equal to the size of the smallest constituent
unit in the model. At p < p. and p > p,, £ is finite,
and the system is only fractal at length scales
shorter than the correlation length. On length
scales longer than &, the structure is homogeneous.
This property of percolation clusters may help
reconcile the notion that fractals need not exhibit
self-similarity across all length scales (Fig. 3C) (23).

We used a continuum percolation model, where
p is analogous to the atomic packing fraction (o),
and the percolation threshold is analogous to a
critical volume fraction (¢.), such that ¢. = @p.
(23, 24). The correlation length is

5§°C|(P—(Pc|7v

for continuum percolation, where v = 0.8764 (25).

We estimated @cyz: to be 0.717 to 0.728 using
the chemical compositions and the atomic radii
of the simulated glasses (29). A reasonable mo-
del for the packing of a binary metallic glass
involves continuum packing of hard spheres,
with a p. of ~0.310 (26). We obtained a ¢ of
0.257 by averaging the hard-sphere value (¢, ~
0.224 = p.cuz) With an overlapping sphere
value (pc ~ 0.2896) (27), because atoms in me-
tallic glass are not ideally rigid (28). The corre-
lation length was ~2 for CuyZrss (Ecuzr ~ 1.93
to 1.98), suggesting that the information in the
first and second peaks pertains mostly to the
angstrom-sized fractal clusters, whereas infor-
mation in the third peak pertains to the homo-
geneous bulk. This result is consistent with our
observations of a crossover in dimensionality
between 7, and r; (Fig. 2A), and it provides
evidence for the presence of percolation struc-
ture in metallic glasses. The short-range con-
siderations for high local densities favor the
formation of Cu-centered clusters, giving rise
to a large number of Cu-centered icosahedra
in lieu of the close-packed structures in native
Cu and Zr (Fig. 3D) (I16). The atoms with local
icosahedral order form a percolating network
(Fig. 3E).

Equation 1 suggests that higher packing frac-
tions bring about shorter correlation lengths.
We estimated that the NiggAly, has a high pack-
ing fraction, @yia, Of ~0.793, although this could
be an overestimation due to the covalent nature
of the Al bonding. This estimate gives Eyia ~ 1.73,
which is much less than 2. The result shows a
crossover in dimensionality from ~2.54 to ~3
that occurs between 7, and 7, (Fig. 2B). We were
also able to induce a shift in the CuygZrs, cross-
over from between 7, and 75 to between 7, and
7o at a pressure of >15 GPa by increasing the
packing fraction and bringing &z, below ~1.7
(fig. S1) (29). Some of the atoms in amorphous
materials undergo local nonaffine displacements,
even in response to purely hydrostatic loads.

The fraction of such nonaffine atoms is low
(~21.7%), and they do not appear to have any ef-
fect on the scaling behavior and crossover (figs.
S2 and S3) (29).

We related the current model to the glass tran-
sition by examining the dimensionality as a func-
tion of temperature. We did not observe fractal
behavior of CuygZrs, until 400 K, well below the
glass transition temperature (7}, ) of 763 K (Fig. 4A).
The dimensionality gradually decreased from ~3
to ~2.54 over this temperature range as the tem-
perature decreased. This behavior suggests an
intermediary process such as jamming (9, 30, 31),
where the percolating cluster begins to jam at
the glass transition. Complete jamming occurs at
lower temperatures, along with the emergence of
fractal properties, correlating with a loss of er-
godicity and consistent with the characteristic
kink in the volume-temperature curve during su-
percooling (Fig. 4B). Despite structural similar-
ities, liquids are amenable to rearrangements in
local atomic configurations, whereas in rigid
solids, these configurations are preserved. Pres-
sure elicits a mostly nonaffine response from
the liquid and a comparatively affine response
from the glass. Applied hydrostatic forces inev-
itably alter the structure and induce structural
relaxation in a liquid, which is unavailable in a
glass. This difference is probably the reason for
the emergence of fractal properties below 7, in a
glass and the lack thereof above T in a liquid.
Metallic liquids possess packing fractions in
excess of our estimated percolation threshold,
which implies that their atomic structures are also
percolating clusters that have not yet frozen or
jammed.

A fractal model might be useful in explaining
the dynamics of metallic glasses, as concepts
from percolation have been applied success-
fully to other glass formers (32). The dynamic
heterogeneities that emerge in supercool liquids
may be related to the spatial distribution of non-
percolating clusters. Estimating the average num-
ber of particles in these clusters using ~Ngyg = g3,
where & ~ 2, we got a value (~8) that is close to
experimentally observed values in colloidal glasses
(~3 to 7) (33). From the perspective of packing,
percolation, and jamming, a correlation between
density and T, (34) is intuitive. If metallic glasses
are created from the jamming of a percolating
cluster, then glass formation is simplified: Liquid
metal only needs to reach the jamming packing
fraction, ¢, before nucleation occurs. This could
be accomplished by a combination of hydrostatic
pressure and fast cooling rates. The strong cor-
relation of metallic-glass yield strength with T,
implies that collective atomic motions dictate
both yielding and glass formation (35). Because
denser metallic glasses tend to be better glass
formers with higher T}, (34), the strength enhance-
ment observed in glasses with higher 7, may
originate from the size of the percolating clus-
ters, which increases with packing fraction.
Higher packing leads to larger jammed clusters,
which present more substantial barriers to the
initiation of collective atomic motions that lead
to catastrophic shear banding. The movement of
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finite nonpercolating clusters may also be related
to shear transformation zones, which are collective
rearrangements of atoms during the deformation
of metallic glasses (36). This concept is supported
by the observation that typical zone sizes (~10
to 20 atoms) (37-39) are close to cluster sizes
(~8 atoms). The continuum percolation model
illustrates how structure and rigidity may orga-
nize in the absence of ordering; atoms percolate
in the liquid, and the percolating cluster “freezes”
(or jams) into a glass.
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An ultrathin invisibility skin cloak

for visible light

Xingjie Ni,'* Zi Jing Wong,'* Michael Mrejen," Yuan Wang,"> Xiang Zhang">3+

Metamaterial-based optical cloaks have thus far used volumetric distribution of the
material properties to gradually bend light and thereby obscure the cloaked region. Hence,
they are bulky and hard to scale up and, more critically, typical carpet cloaks introduce
unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we
demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This
skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration
of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises

a metasurface with distributed phase shifts rerouting light and rendering the object
invisible. In contrast to bulky cloaks with volumetric index variation, our device is only

80 nanometer (about one-ninth of the wavelength) thick and potentially scalable for hiding

macroscopic objects.

cloak is a device that can render objects

invisible to incoming waves. Transformation

optics and metamaterials provide powerful

tools to build cloaking devices. Different

schemes relying either on coordinate trans-
formation (7-3) or scattering cancellation (4-6)
have been studied. Although the concept was first
proposed for electromagnetic waves, soon it was
extended to acoustic waves (7), heat flows (8-10),
elastic or seismic waves (17-13), and even the mat-
ter waves (14, 15). A quasi-conformal mapping
technique (76) was used to design a so-called carpet
cloak that conceals an object by restoring the
wavefront as if it were reflected from a flat surface.
This technique relaxes the requirements of hard-to-
achieve material properties and anisotropy as in the
case of the original cloak, thereby making it easier
to design and fabricate. Such invisibility carpet
cloaks were demonstrated experimentally from
microwave (17) to optical frequencies (18-23). Never-
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theless, there are still substantial limitations in
current optical cloak designs that apply the quasi-
conformal mapping technique. Realization requires
refractive index modulation over a large volume to
avoid extremely high or low index, leading to a bulky
cloak. In addition, sophisticated three-dimensional
(3D) fabrication with very high spatial resolution is
necessary. Therefore, it is challenging to scale up
this design to macroscopic sizes. In addition, the
varying index has to be less than that of the
environment in certain regions (Fig. 1C), making it
difficult to create a cloak that works in air. As a
result, the cloak is usually embedded in a dielectric
prism of higher index which, however, introduces
an additional phase in the reflected light and makes
the optical cloak itself visible by phase-sensitive
detection.

Recent development of metasurfaces pointed
out a way to manipulate the phase of a propagating
wave directly. The metasurface is an optically thin
layer consisting of subwavelength-sized elements
that locally tailor the electromagnetic response at
the nanoscale accompanied by dramatic light con-
finement (24-30). Metasurfaces have enabled a
variety of unique phenomena and applications that
cannot be achieved conventionally (31, 32)—for
example, negative-angle refraction in a broad
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