Negative expansions of interatomic distances in metallic melts

Hongbo Lou*, Xiaodong Wang*, Qingping Cao, Dongxian Zhang, Jing Zhang, Tiandou Hu, Ho-kwang Mao, and Jian-Zhong Jiang

*International Center for New-Structured Materials and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China; Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People’s Republic of China; and Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20055

Contributed by Ho-kwang Mao, April 30, 2013 (sent for review April 2, 2013)

When a material is heated, generally, it dilates. Here, we find a general trend that the average distance between a center atom and atoms in the first nearest-neighbor shell contracts for several metallic melts upon heating. Using synchrotron X-ray diffraction technique and molecular dynamics simulations, we elucidate that this anomaly is caused by the redistribution of polyhedral clusters affected by temperature. In metallic melts, the high-coordinated polyhedra are inclined to evolve into low-coordinated ones with increasing temperature. As the coordination number decreases, the average atomic distance between a center atom and atoms in the first shell of polyhedral clusters is reduced. This phenomenon is a ubiquitous feature for metallic melts consisting of variousized polyhedra. This finding sheds light on the understanding of atomic structures and thermal behavior of disordered materials and will trigger more experimental and theoretical studies of liquids, amorphous alloys, glasses, and casting temperature effect on solidification process of crystalline materials.

The study of metallic liquid structure is of importance because it is a fundamental issue in materials science and condensed-matter physics due to its critical role in understanding the processes of melting, solidification, and glass transition (1–6). Progress has been achieved in recent years both experimentally (7–24) and theoretically (13, 25–33). It is widely accepted that metallic liquids are composed of atomic clusters (7–33). However, how these clusters evolve upon external effects (e.g., temperature and pressure) still remains unclear (7–37). Generally, materials undergo thermal expansion and average atomic distance in the first shell increase upon heating. Here, we report a contraction of average atomic distance between a center atom and atoms in the first shell for metallic Al, Zn, Sn, In, Cu, Ni, Ag, and Au melts during heating. The thermal behaviors of metallic melts (pure elements and alloys) have been intensely studied, whereas the anomalous behavior of average atomic distance between a center atom and atoms in the first shell in liquids was usually ignored or not systematically evaluated (7–9, 21, 24). The anomalous behavior is focused upon and systematically investigated here by applying the state-of-the-art advanced synchrotron radiation-based experimental techniques and theoretical methods.

Results and Discussion

Fig. 1 shows the pair correlation function g(r) at different temperatures for Al and Zn obtained by in situ high-temperature X-ray diffraction (XRD). Similar results for Sn and In metallic melts were also obtained in Fig. S1. The g(r) was obtained by Fourier transformation of the structure factor S(q) data, which reveals the average probabilities for finding atoms at a distance r for a given atom. In crystalline phases, atoms are located in discrete shells. However, in disordered structures they usually exhibit a broad distribution. The peak shape at various r values in g(r) do not change obviously in the studied temperature range.

The authors declare no conflict of interest.

1To whom correspondence may be addressed. E-mail: jiangzj@zju.edu.cn, wxgndz@zju.edu.cn, or maohkwg@cinet ALWAYSSite.edu

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1307967110/DCSupplemental.
The simulated result and the experimental one is shown in Fig. 3A, Inset. It is found that the average bond length in the first shell indeed decreases with increasing temperature in Fig. 3B. Results obtained both from in situ XRD and in situ EXAFS measurements reveal that the average bond length between center atom and atoms in the first shell does contract with increasing temperature in studied metallic melts.

Molecular dynamics (MD) simulation plays an important role in understanding the atomic structure and the related properties of complex systems. To uncover the mechanism for the finding mentioned above, MD simulations were performed for the selected single elements of Al, Cu, Ag, Au, and Ni, by which good reliable atomic potentials are available (38–40). Agreements in \(g(r) \) and \(S(q) \) between the MD simulated data and experimental ones (Fig. S4) were achieved for Al. Fig. 4A shows the \(g(r) \) of pure Al changing with temperature from 400 to 2000 K produced by MD. The melting point is at the temperature between about 900 and 1000 K, which is close to the experimental value of 933.5 K. It is demonstrated that the peak intensity is significantly reduced and the first peak position in \(g(r) \) indeed shifts to low \(r \) values after melting upon heating, which is consistent with the experimental observations in Fig. 1. Using the Voronoi tessellation

![Fig. 1](image1.png)

Fig. 1. First peak position of \(g(r) \) curves shift upon heating for liquid melts. (A) \(g(r) \) curves for Al with temperature increasing from 937 to 1077 K with 20-K increment. (B) \(g(r) \) curves for Zn with temperature increasing from 710 to 830 K with 20-K increment. (A and B, Insets) Local magnification of the top part for the first peak of \(g(r) \), showing the reduced peak intensity and peak positions shift to low \(r \) values with increasing temperature. (C) Variation of the first peak position in \(g(r) \) changing with temperature for metallic Al, Zn, Sn, and In melts. The lines are the linear fit of the peak position.

![Fig. 2](image2.png)

Fig. 2. Variation of CN for the first shell changing with temperature for metallic Al, Zn, Sn, and In melts. The lines are the linear fit of CN.

![Fig. 3](image3.png)

Fig. 3. Structural changes in liquid Zn with increasing temperature by EXAFS experiments. (A) Backward Fourier transform results obtained from in situ EXAFS experiments of liquid Zn at three different temperatures: 693, 713, and 743 K. (Inset) Comparison of the simulated results and the experimental one at 693 K. (B) Declining trend for the bond length estimated from the single-distance shell model simulation at three temperatures. The line is the linear fit of the three points.
method (41) with a cutoff of 3.7 Å, the evolution of polyhedra within the nearest neighbor was studied for Al melts. The fraction of ideal icosahedra of \(<0,0,12,0> \) is quite low (about 1%), and Fig. 4B displays that most icosahedron-like polyhedra are \(<0,2,8,0> \), \(<0,2,8,1> \), and \(<0,2,8,2> \). With increasing temperature, the tendency of atomic configuration evolution is that the fractions of high-coordinated polyhedra like 11- and 12-coordinated are decreased. Accordingly, low-coordinated polyhedra (9- and 10-coordinated) are distinctly increased. This implies that high-coordinated polyhedra are relatively stable at low temperatures, and vice versa. Fig. 4C shows that the average bond lengths between center atom and atoms in the first shell change with the CN, indicating that high-coordinated polyhedra have larger average distances between center atom and atoms in the shell than those of low-coordinated ones. Bond lengths in polyhedra having the same CN value increase at high temperatures. Usually, the larger the distance between atoms, the weaker the bonding will be. High temperature makes atoms vibrate drastically, which could drive some of them to break away from high-coordinated polyhedra where the weaker atomic bonds are located. Consequently, it is an intrinsic nature that the polyhedra in metallic melts become low-coordinated clusters with short bond lengths at higher temperatures. Fig. 4D schematically shows that the major polyhedra change from CN = 12 to CN = 10 with temperature increase. Indeed, the similar variation tendency was observed for single elements of Cu, Au, Ag, and Ni (details shown in Figs. S5–S8). Fig. 5A clearly reveals negative variations of average bond length between center atom and atoms in the first shell as a function of temperature for Al, Cu, Ag, Au, and Ni liquids with increasing temperature from MD simulations. The similar trend in the coordinate number reduction is displayed in Fig. 5B, in good agreement with the above experimental results for Al, Zn, Sn, and In. All results obtained for liquid zinc from ab initio MD simulation and reverse Monte Carlo simulation in Figs. S9 and S10 are also consistent with the results mentioned above.

The finding mentioned above could be a ubiquitous phenomenon for metallic melts upon heating. The origination of this phenomenon comes from the structural change in the first shell, that is, the number of high-coordinated polyhedra, in which atoms have large average atomic distance between a center atom and atoms in the shell, is reduced when temperature increases, forming more close-packed small clusters. Consequently, the average atomic distance and CN in the first shell decreases with increasing temperature. However, on the macroscopic scale, the bulk volume of liquids is expanded as shown in Fig. S11. The average bond lengths for the high-order shells (\(>2 \)) in \(g(r) \) indeed gradually increase with temperature in most studied liquids in Figs. S12 and S13. Hence, most likely, more excess open volumes (or free volumes) are created between polyhedra, thereby reducing the liquid density upon heating (42, 43). In addition, although the shift of the first peak to lower \(r \) values in \(g(r) \) was reported for multicomponent alloys (21, 44, 45) and some speculations were stated in the previous published papers (7–9, 24), it is still impossible to deduce the atomic bond change due to the overlapping effect of many atomic bonds in multicomponent alloy systems, e.g., 3 atomic bonds (A–A, A–B, and B–B pairs) for a binary alloy A–B system and 10 atomic bonds (A–A, A–B, A–C, A–D, B–B, B–C, B–D, C–C, C–D, and D–D pairs) for a quaternary alloy A–B–C–D system. Only using simple pure metal elements, the atomic distance in the first shell can be unambiguously determined from the first peak shift in pair correlation function. Moreover, a liquid can be transformed into a glass upon cooling if the crystallization is bypassed. Our results that at high temperatures the melts contain many low-coordinated
polycrystalline, whereas at low temperatures they have high-coordinated polyhedra of icosahedron-like clusters, can explain that reported experimental results, e.g., different temperatures of melts, at which melts are quenched, could affect the glass-forming process, thermal stability, and mechanical properties of systems (46–52). Furthermore, our finding might also shed light on the casting temperature effect on solidification process in crystalline systems, and the glass transition phenomenon in disordered systems because they are atomic packing related as well.

Conclusions

In summary, the atomic structure changes of liquid Al, Zn, Sn and In upon heating have been measured by in situ synchrotron X-ray diffraction and/or EXAFS, and those of liquid Al, Cu, Ag, Au, and Ni reproduced by classic MD simulations and Zn by ab initio MD simulations. We proposed a scenario describing metallic clusters evolution in the liquid state, i.e., high-coordinated clusters with larger bond length between a center atom and atoms in the shell declined into low-coordinated clusters with smaller bond length upon heating. We observed the contraction of average atomic distance between a center atom and atoms in the first shell and the reduction in CN in the first shell for eight metallic melts upon heating. Such structural evolution can further promote the understanding of thermal behavior of disordered materials including melting, solidification, glass transition, and phase transition in liquid phases.

Methods

The high-energy XRD measurements were carried out on the BWS station by using synchrotron radiation with a wavelength of 0.12 Å at HASYLAB/DESY, Hamburg. Pure Al, Zn, Sn, and In wire were cut into fine pieces and then transferred into a capillary 2 mm in diameter. After pumping, a vacuum environment in the capillary was created. The heater is composed of twin face-to-face tungsten bulbs. The furnace temperature was calibrated and controlled by two thermocouples, one inside the capillary reaching a place just above the sample, and another in the chamber. The X-ray beam size and wavelength used were 0.5 × 0.5 mm² and 0.124 Å, respectively. Upon heating, the diffraction patterns were in situ automatically collected from 323 K by a flat-panel Si detector (Perkin-Elmer 1621) with 200 × 200 μm² pixel size and 2048 × 2048 pixels. Exposure time was 2 s, and five diffraction patterns were summed for each data set. Scattering intensity I(q) (vs. scattering vector) were extracted by using the software package FIT2D (53). From I(q), structure factor S(q) and PDF G(r) could be obtained by using the program PDFget2X (54). Then, the pair correlation function g(r) is calculated by g(r) = 1 + G(r)/4πrρ0, where ρ0 is the atomic number density. For Zn melts, high-temperature EXAFS measurements (55) at the Zn K-edge on the beamline 1W1B-XAFS of the Beijing Synchrotron Radiation Facility were also carried out because this technique can give the average atomic bond length in the first shell, whereas a detailed description can be found in SI Methods.

Molecular dynamics (MD) simulations were performed for the selected single elements of Al, Cu, Ag, Au, and Ni. Adopting well-developed embedded atom method potentials for such elements (38–40), we simulated the whole thermal process by using the LAMMPS code (56). A cubic box containing 20,000 atoms with 3D periodic boundary conditions was heated to about 800 K above their melting points under zero external pressure (constant number of particles, constant pressure, and constant temperature ensembles and Nose–Hoover thermostat) (57) at a heating rate of 1 × 10¹⁰ K s⁻¹. Lacking a good atomic potential for Zn, ab initio MD simulations for 128 Zn atoms were also carried out by using the density functional theory implemented in the Vienna ab initio simulation package (VASP) code (58). Detailed description of the ab initio MD simulation and reverse Monte Carlo simulation for pure Zn is given in SI Methods.

ACKNOWLEDGMENTS. The authors thank the HASYLAB staff of BWS for assistance during the XRD measurements and the Beijing Synchrotron Radiation Facility staff of 1W1B-XAFS for the EXAFS measurements. Financial support was received from the National Key Basic Research Program of China (2012CB825700), Natural National Science Foundation of China (Grants 10979002, 50920105101, 51071141, 5105011036, 11179026, and 10904127), Natural Science Foundation of Zhejiang Province (Z1110196), and the Zhejiang University–Heimholtz Cooperation Fund (IK-Ch-0002). The authors also acknowledge fundamental research funds for the central universities and the Department of Science and Technology of Zhejiang Province and Zhejiang University and the Shanghai Supercomputer Center for supporting the MD simulations with the magic supercomputer. H.-K.M. was supported as part of EfFree, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001057.

