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ABSTRACT: 2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide
application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp’-carbon
nanothread (CNTh) upon compression. With the help of perfectly aligned 7—7x stacked molecules and strong intermolecular
hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure
determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the
FDCA experienced continuous [4 + 2] Diels—Alder reactions along the stacking direction at the threshold C---C distance of ~2.8 A.
Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g™ as an anode material
of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline
CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique
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configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials.

roduction of green polymeric materials from biomass-

based platform chemicals is necessary for a sustainable and
greener society.' ' 2,5-Furandicarboxylic acid (FDCA) is a
well-known renewable building block that can be synthesized
from oxidation of S-hydroxymethylfurfural (HMF, an inter-
mediate product of the acid dehydration of sugars) or directly
from carbohydrates by a one-pot reaction.”® It has two
carboxyl groups and can be transformed into several families of
useful compounds, like the polyesters, polyurethanes, and
polyamides.”~'” On the other hand, the furan ring is also an
important precursor for constructing advanced materials. Very
recently, furan was reported to transfer into sp’-carbon
nanothreads (CNThs) via a pressure-induced polymerization
(PIP) process under a relatively low pressure (~10 GPa) due
to its reduced aromaticity, and a large-scale synthesis can thus
be achieved.'"'” Such CNThs were also called diamond
nanothreads,'>™"? which were predicted to have extraordinary
high tensile strength and bending modulus and have potential
application in tunable thermal conductivity materials, energy
storage devices, and nanoelectromechanical systems.”"”**
Comparing to benzene,"*™"> the furan ring has only four
carbon atoms, resulting in fewer possible bondin§ routes and
hence improving the homogeneity of the CNThs.”* Under the
help of the advanced solid-state nuclear magnetic resonance
(NMR) techniques, Matsuura et al. concluded that about 10%
of the sample is a perfect furan-CNTh, with an almost entirely
anti-configuration.'” Besides, the stacking order and inter-
molecular interaction (z—x stacking”*™*’ and H-bond-
ing”®™") of reactant molecules were also key factors in the
preparation of structure-specific crystalline polymeric material,
as evidenced by the PIP product of the naphthalene—

© 2022 American Chemical Society

WACS Publications

21837

2425 oo .26 La . 27
octafluoronaphthalene cocrystal, s-triazine,” pyridazine,

aniline,”® acetylenedicarboxylic acid,”® etc. Therefore, with the
two pairs of intercarboxyl H-bonds, FDCA should be a better
precursor for the synthesis of crystalline structure-specific
CNThs. In this work, by compressing FDCA we obtained
crystalline, carboxyl-substituted syn-furan-CNThs, as deter-
mined by the Rietveld refinement of X-ray diffraction (XRD)
data, in obvious contrast to the furan-derived CNThs with
anti-configuration." "> The carboxyl and the CNTh skeleton
result in a good electrochemical performance and chemical
stability for application as lithium-ion battery (LIB) anode
material. Our work demonstrated a direct high-pressure
synthetic route from biomass to advanced functional carbon-
based material with excellent electrochemical properties and
unique mechanical merit.

At ambient pressure, FDCA has a monoclinic lattice (Figure
1, space group P2,/m) with a = 4.97(1) A, b = 16.69(2) A, c =
3.66(1) A, and 8 = 96(1)°.>" The furan rings are stacked into
columns with syn-configuration (all the oxygens on one side)
along the c-axis, and these columns are connected by H-bonds
along the b-axis. The angle between the furan plane and the a—
b plane is 33.8° and the minimum intermolecular distance
between carbon atoms is dc,..cy = 3.284 A. We investigated
the high-pressure structural evolution of FDCA by in situ
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Figure 1. Crystal structure of FDCA at ambient pressure viewed along
the b- and c-axis.

synchrotron XRD experiments (Figures 2a and S1). Upon
compression, the diffraction peaks moved toward higher
angles. It is worth noting that the peak 020 (index below the
patterns in Figure 2a, at ~4.3°) moved only a little bit,
suggesting the structural stability of the b-axis (the direction of
the H-bond). The 001 and —101 peaks moved the fastest,
indicating the most pronounced deformation along the furan
column. The cell parameters and volume of FDCA at high
pressures were obtained by Le Bail fitting of the XRD data,
which demonstrated the anisotropic compression quantita-
tively (Figure S2). At 12.1 GPa, new diffraction peaks appeared
at 8.0° and 11.7° (marked by asterisks in Figure 2a), close to
the peaks 110 and 140, respectively, and the sample became
brown (Figure S3), which indicates the onset of reaction and
the generation of poly-FDCA. These peaks were maintained at
higher pressure and during decompression, and a series of
diffraction peaks including d = 8.45, 5.18, 4.96, and 3.25 A
were clearly observed after decompression to 1.0 GPa.

The critical crystal structure of FDCA at 10.8 GPa (just
before reaction, Figure 2b) was determined by Le Bail fitting

and subsequential density functional theory (DFT) optimiza-
tion of the atomic coordinates. The FDCA molecule
maintained in plane, and the d,..c; between adjacent furan
rings was compressed to 2.788 A (green line in Figure 2b).
This distance agrees with the reaction threshold (dc..c) of
many aromatic molecules under high pressure, like d-_. = 2.8
A for benzene™ and CgHg—CgF, cocrystals,” and hence
suggests that FDCA can polymerize via a [4 + 2] cycloaddition
reaction by bonding of C2:--C3’, as confirmed by the solid-
state NMR studies of the furan-CNTh.'”” Our dynamic
simulation result also followed this route and produced the
syn-FDCA-CNTh as expected (Figure S4).

To investigate the crystal structure of the poly-FDCA
experimentally, we synthesized milligrams of the polymerized
product by Paris—Edinburgh (PE) press at 30 GPa (noted as
PE-30). Compared to the reported benzene/furan/thiophene-
derived CNThs with only one broad diffraction peak at 4.9—
5.6 A" the poly-FDCA shows many sharp diffractions
(Figure 2c and Figure SS plotted in d-spacing) with a
minimum d-spacing of ~1.4 A distinguished. This unambig-
uously demonstrated the atomic-level ordering in the CNThs.
Inspired by the theoretical simulation, a monoclinic unit cell
was used to index the pattern perfectly, and the lattice
parameters were obtained with a = 5.3526(5) A, b =
16.9062(12) A, ¢ = 2.6632(3) A, a = y = 90°, and § =
90.23(9)° by Rietveld refinement (Figures 2c and S5, Table
S1). The intense peaks at 8.46, 5.36, and 2.66 A are indexed as
020, 100, and 001, respectively, indicating that the crystal
structure has excellent ordering in three dimensions (3D). The
atomic coordinates were also determined by Rietveld refine-
ment (Table S2), forming a syn-FDCA-CNTh structure. As
shown in Figure 2d, the furan units form syn-CNThs along the
c-axis and the H-bonds connect the CNThs in the a—b plane
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Figure 2. (a) Synchrotron XRD patterns of FDCA at selected pressures. The red asterisks indicate the formation of poly-FDCA, and down-arrows
represent decompression. The gray and red lines represent the diffraction peak shifts of FDCA and poly-FDCA, respectively. The Miller indices and
the corresponding d-spacings of FDCA and poly-FDCA are labeled. (b) The critical crystal structure of FDCA at 10.8 GPa. (c) Rietveld refinement
plot of the XRD pattern. The diamond labels represent the diffraction peaks of iron chips from the gasket. (d) Crystal structure of syn-FDCA-

CNTh.
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to form a network as in the reactant, in agreement with the
dynamic simulation results mentioned above. This is the first
time the atomic-level structure of CNTh was determined due
to its enhanced structural ordering. The poly-FDCA has a
unique syn-configuration and complete interthread ordering, in
obvious contrast to the furan-CNThs and other CNThs. This
is attributed to the in-phase columnar stacking of the FDCA
monomer, which is locked by the H-bonds between carboxyl
groups and cannot rotate during the polymerization.

The polymerization process of FDCA was also tracked by
the in situ infrared (IR) spectroscopy (Figures 3a and S6a and
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Figure 3. (a) In situ IR spectra of FDCA upon compression. The
inset shows the amplified spectrum at 50.2 GPa; the blue and yellow
regions mark the characteristic IR peaks of the FDCA and poly-
FDCA, respectively. v, 7, and f represent the stretching, out-of-plane
bending, and in-plane bending vibration, respectively. (b) IR spectra
collected at ambient pressure and room temperature for FDCA and
poly-FDCA synthesized at various conditions, and the calculated IR
spectrum of the syn-FDCA-CNTh. (c) XRD patterns of DAC-HPHT
and PE-30 at ambient pressure and room temperature, with the in situ
DAC sample decompressed to 1 GPa for comparison.

b) with the IR modes assigned in Table S3. Above 11.5 GPa,
the characteristic IR modes of the furan ring including the out-
of-plane bending of =C—H (y—_c_p, 771, 90S, and 987 cm™")
and the stretching vibration of C=C (vc_¢, 1584 and 1603
cm™') gradually disappeared. Meanwhile, four new peaks
appeared at 716, 889, 1103, and 3106 cm ™}, which are assigned
to the C—H out-of-plane bending mode (y_c_y), C—H in-
plane bending mode (f_c_y;), C—C stretching mode (vc_c),
and sp>-C—H stretching mode (v_c_y), respectively (red
asterisks in Figures 3a and S6b). Furthermore, the profiles of
the vring and C=O0 stretching (Vc_o) modes at 1465 and
1696 cm™" start to change significantly. All of these clearly
confirmed the onset of the reaction of FDCA, with the
transformation from sp’-carbon to sp>-carbon. The pressure
dependence of selected IR peaks also shows obvious
discontinuity or new peaks at 10—12 GPa, demonstrating the
PIP clearly (Figure S6¢). During decompression (Figure S6d)
down to ambient pressure (DAC-50 GPa in Figure 3b), the
vibration modes (y_c_p, f—c-w VY- Ve-n) of poly-FDCA

21839

were maintained, and the y_._y and vc_c modes of FDCA did
not reappear, indicating the irreversibility of the reaction and
the stability of the CNTh. Moreover, the IR spectra of DAC-50
GPa and PE-30 (Figure 3b) are nearly identical, indicating that
the polymers made from DAC and PE press have the same
structure. The calculated IR spectrum of syn-FDCA-CNTh
makes an excellent match to the experimental IR spectrum,
which further validates the model (Figure 3b).

The synthetic pressure of poly-FDCA was significantly
reduced by increasing the reaction time and temperature, as
confirmed by the IR spectra and XRD (Figures 3b,c and S7).
The samples obtained using DAC at S0 GPa (DAC-5S0 GPa),
at 23 GPa for 24 h (DAC-23 GPa-24h), at 350 °C and 12 GPa
(DAC-HPHT), respectively, and PE-30 have similar IR
spectra, and the featured peak of FDCA like y_c_y and ve_c
(marked in blue in Figure 3b) already disappeared. The XRD
data of DAC-HPHT are consistent at different positions,
indicating a good homogeneity (Figure S8). The patterns are
almost identical to that of PE-30 and can be fitted with the syn-
FDCA-CNTh model (Figures 3c and S9, Tables S4 and SS). It
is worth noting that this is a milder condition for scalable
preparation.

The abundant carbonyl groups bring redox properties to
poly-FDCA, which provides a binding site for Li* ions through
reversible electron transfer. We evaluated the electrochemical
performance of PE-30 as an LIB anode material by fabricating
half-cells. As shown in Figure 4a, the cyclic voltammogram
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Figure 4. Electrochemical performance of PE-30 as an LIB anode

material. (a) CV curves at a scan rate of 0.5 mV s™%. (b) Galvanostatic

discharge—charge profiles and (c) electrochemical cycling perform-

ance at a current density of 0.1 A g™'. (d) Rate performance under
different current densities (A g™').

(CV) curves show a pronounced reduction peak at 0.41 V in
the first cycle, attributed to the formation of a solid electrolyte
interface (SEI) film on the surface and the irreversible bonding
of Li* ions to the carboxyl groups. This is consistent with the
first charge—discharge profile shown in Figure 4b, correspond-
ing to a Coulombic efficiency of 40.57%. In the following
cycles, two cathodic peaks were steadily observed at ~0.60 and
~1.47 V owing to the reduction of carbonyl groups upon
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insertion of Li* ions. The capacity and Coulombic efficiency
increased dramatically upon cycling (Figure 4c), suggesting
continuous activation of the poly-FDCA material and
reversible insertion of Li* ions. The discharge/charge specific
capacity reached a maximum of ~413 mAh g' at the 374th
cycle and maintained ~375 mAh g~ with a Coulombic
efficiency above 99% in the subsequent cycles. This is close to
the capacity of graphite (specific capacity of ~360 mAh g™* by
the formation of LiCy),”* which is the most commonly used
anode material for lithium ions today. By reducing the constant
current to 0.1 A g™' after charging and discharging at a high
rate of 1 A ¢! (Figure 4d), the discharge specific capacity was
recovered to 141.1 mAh g~', reflecting good cycle/rate
performance and structural stability. These results demon-
strated that the poly-FDCA-CNTh is a good candidate as an
LIB anode material.

In summary, we synthesized crystalline carboxyl-substituted
syn-furan-CNTh with uniform chemical structure and excellent
electrochemical properties as an LIB anode. The product
shows distinct XRD peaks in three dimensions, which allowed
determining the atomic positions by Rietveld refinement. The
continuous [4 + 2] cycloaddition reactions along the furan
columns were concluded based on the structural analysis under
threshold pressure and IR spectral evolution. The H-bonds
guided the polymerization pathway to obtain the structure-
specific crystalline product. The chemical stability of the sp’-
CNTh backbone and the high content of carbonyl groups
resulted in high electrochemical specific capacity and excellent
cycling stability and evidenced that poly-FDCA is a good
candidate for the LIB anode materials. This is the first example
to show the application of the functionalized diamond
nanothreads. Due to their high stiffness, better water affinity,
and enhanced intermolecular interaction, more applications
like reinforcement for the nanocomposites and development of
biocompatible materials can be expected. More importantly,
since H-bonds are very common in biomass molecules, and the
molecules are often unsaturated, ready for polymerization
upon compression, our work actually provides a high-pressure
route for tailored synthesis of functional carbon-based
materials from biomass.
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