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A B S T R A C T   

Solid polymer electrolytes (SPEs) have attracted considerable research interest because they are expected to solve 
the safety problems caused by the liquid electrolytes. However, the low ionic conductivity limits their practical 
applications. Constructing Li+ fast conducting network in SPEs with Li+ highly conducting ceramic fillers 
following the mixed matrix membrane concept have shown their limits in raising the Li+ conductivity. Herein, a 
new strategy using Li+ non-conducting fillers like CeO2 nanowires, is proposed to construct a Li+ fast conducting 
network through SPEs. CeO2 nanowires can dissociate LiTFSI, which results in a high Li+ conductivity through 
the SPEs near to the fiber surface. This experimental finding is confirmed by analytics (FT-IR, Raman and NMR) 
and theoretical calculations (DFT-MD and COHP). As a result, the network of interwoven CeO2 nanowires helps 
form a continuous Li+ fast conducting percolation network through the SPEs. The ionic conductivity of the 
composite SPEs with 10 wt% CeO2 nanowires is greatly improved (1.1 × 10− 3 S cm− 1 at 60 ◦C). The Li symmetric 
cells with this composite electrolyte exhibit good cyclic stability (without short circuiting after 2000 h), and the 
all-solid-state LiFePO4/Li cells present a superior cycling performance (remained 140 mA h g− 1 after 100 cycles 
at 1 C).   

1. Introduction 

Lithium-ion batteries (LIBs) are currently developed to meet the 
increasing energy demands ranging from portable devices to electric 
vehicles and large-scale energy storage systems [1,2]. However, tradi-
tional commercial LIBs with liquid organic electrolytes have severe 
safety risks, such as electrolyte leakage, flammability, or even explosion 
[3]. Solid-state electrolytes (SSEs) have attracted much research interest 
because they are expected to solve the security issue resulting from the 
use of liquid electrolytes [4–8]. Until now, two general types of Li-ion 
solid electrolytes have been investigated: ceramic electrolytes and 
solid polymer electrolytes (SPEs) [5,9]. A large number of ceramic 
electrolytes have been widely studied, such as garnet oxides, [10–12] 
NASICON-type phosphates, [13–15] (anti)perovskite type, [16–18] 
thio-LISICON [13,19] and sulfide-based ceramics [20,21]. In general, 

ceramic Li-ion electrolytes have a relatively high ionic conductivity and 
lithium transfer number as well as good mechanical, chemical and 
thermal stability, but the high interfacial impedance with the electrodes 
and the difficult fabrication process impedes their practical application 
in all-solid-state lithium metal batteries (LMBs) [9]. 

In contrast to ceramic electrolytes, SPEs have better flexibility, lower 
interfacial resistance and manufacturing cost, and easier stacking and 
sealing, which is beneficial for the manufacture and indicates a prom-
ising future for all-solid-state batteries. However, the greatest challenge 
for the practical application of SPEs mainly lies in its poor ionic con-
ductivity [5–7], for example, PEO-based SPEs have only an ionic con-
ductivity of approximately 10− 7–10− 6 S cm− 1 at room temperature [22]. 
Since Li-ion migration mainly occurs in an amorphous region of PEO 
[23], dispersing inorganic nanoparticles, including TiO2 [24–26], Al2O3 
[27,28], SiO2[29], ZrO2[30], Li1+xAlyGe2− y(PO4)3 (LAGP) [31] and 
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Li7La3Zr2O12 (LLZO) [32,33] etc., within the polymer matrix has been 
proven to be an effective approach to prevent crystallization thus 
improving the ionic conductivity. Additionally, experimental research 
has shown that surface groups such as Lewis acid sites of the inorganic 
nanofillers are able to dissociate Li salts since they interact with the 
anions of salts thus liberating free Li+ which improves the ionic con-
ductivity [24,34–36]. Filler materials with oxygen vacancies have been 
developed to improve the ionic conductivity of SPEs due to the posi-
tively charged oxygen vacancies that could serve as Lewis acid sites in 
the composite solid polymer electrolytes (CSPEs) [37–39]. Lately, 
Goodenough and coworkers confirmed that some inorganic oxides with 
oxygen vacancies could dissociate Li salt and release free Li+ by means 
of Li solid-state nuclear magnetic resonance (NMR) measurements [40]. 

The construction of Li+ fast conducting network in SPEs is increas-
ingly being recognized as an effectively strategy to further enhance the 
Li+ conductivity. Li+ conducting ceramic nanowire as fillers are pri-
marily considered to construct Li+ conducting network in SPEs. The Li+

conducting ceramic nanowires, including Li6.4La3Zr2Al0.2O12 (LLZAO) 
[41,42], Li0.33La0.557TiO3 (LLTO) [43–46], and Li7La3Zr2O12 (LLZO) 
[47], are used to form fast Li+ conducting networks through the SPEs to 
improve their ionic conductivity. However, Li+ conducting materials are 
expensive and difficult to fabricate. On the other hand, a large number of 
cheap and easy-fabricated Li+ non-conducting nanofillers are available. 
Among them, the cerium dioxide (CeO2) is a recently emerging filler 
[39,40], which possess abundant oxygen vacancies on the surface, and is 
expected to dissociate Li salts and release free Li+ ions near the surface 
[48]. 

In this work, we use a Li+ non-conducting filler, CeO2 nanowires, to 
construct Li+ fast conducting percolation network through SPEs to 
further enhance the Li+ conductivity. Fourier transform infrared spec-
troscopy (FT-IR), Raman spectra, solid-state NMR, density functional 
theory based molecular dynamics (DFT-MD) simulation and crystal 
orbital Hamilton population (COHP) analyzes confirmed that CeO2 with 
surface oxygen vacancies can dissociate Li-bis 
(trifluoromethanesulfonyl)imide (LiTFSI) and release free Li+ ions 

(Fig. 1a). Thus, the free Li+ enriched polymer near the surface of CeO2 
can be regarded as Li+ fast conducting pathway, while the polymer far 
from CeO2 surface is Li+ slow conducting (Fig. 1b–d). In the CSPEs with 
CeO2 nanowires (denoted as CSPE-xNW, x% is the mass content of CeO2 
nanowires), the network of interwoven CeO2 nanowires helps to form a 
continuous Li+ fast conducting percolation network in SPEs (Fig. 1b). In 
the CSPEs with CeO2 nanoparticles (denoted as CSPE-xNP, x% is the 
mass content of CeO2 nanoparticles), there is a high Li+ conductivity 
around the filler but no long-range fast conducting pathways exist 
(Fig. 1c). In contrast, in Fig. 1d only Li+ slow conducting pathways exist 
in the filler-free SPEs (SPE-blank). Consequently, the ionic conductivity 
of the CeO2 nanowire-modified SPEs is greatly improved, which is 
comparable with or even better than that of other Li+-conductive 
nanowire-modified SPEs [44,47,49]. Moreover, the continuous network 
formed by CeO2 nanowires strengthens the mechanical properties of the 
CSPEs and inhibits the growth of lithium dendrites. Benefiting from 
these merits, Li symmetric cells with these CSPEs exhibit good cyclic 
stability (without short circuiting even after 2000 h), and the all-solid- 
state LiFePO4/Li cells present a superior cycling performance 
(remained 140 mA h g− 1 at 1 C after 100 cycles at 60 ◦C). 

2. Results and discussion 

The macroscopic morphology of the as prepared CeO2 nanowires 
(Fig. S1) is extremely fluffy, with a network structure composed of 
interconnected nanowires (Fig. 2a). The nanowires are very uniform 
(Fig. S2) with a diameter of less than 10 nm and an aspect ratio greater 
than 100 (Fig. 2b, c). The nanowires are further characterized by the 
high-resolution TEM (HRTEM, Fig. 2d), which shows visible lattice 
fringes with D-spacing values of 0.313 and 0.277 nm, corresponding to 
the theoretical (111) and (200) lattice planes of CeO2, respectively. The 
fast Fourier transform (FFT) image (inset of Fig. 2d) also demonstrates 
the crystalline nature of the CeO2 nanowires, showing D-spacing values 
of CeO2 with the lattice planes (111) (0.312 nm) and (200) (0.271 nm). 
The photographs and SEM images of the CSPE-10NW and SPE-blank are 

Fig. 1. Schematic illustration of the composite SPE with CeO2 nanowires in comparison with the SPE with CeO2 nanoparticles and filler free-SPE.  
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shown in Fig. S3. The high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) image and corresponding 
elemental mappings of the CSPE-10NW indicate that the CeO2 nano-
wires are still interwoven forming a network in the CSPE (Fig. 2e). TEM 
and HRTEM images of the as-prepared CeO2 nanoparticles are shown in 
Fig. 2f, g. The size of the nanoparticles is ~ 10 nm, which is similar to 
the diameter of the CeO2 nanowires; in addition, the inter-planar 
spacing of the order stripe is 0.311 nm, which is in consistent with the 
(111) lattice plane of CeO2. The X-ray diffraction (XRD) patterns of the 
CeO2 nanoparticles and nanowires (Fig. 2h) demonstrate that the as- 
prepared products are CeO2 (JCPDS card no. 75-0120), in agreement 
with the above HRTEM results. The electron paramagnetic resonance 
(EPR) spectrum of CeO2 nanowires (Fig. S4) exhibits an obvious sym-
metrical signal, which is originated from the unpaired electron trapping 
at the oxygen vacancies [50,51]. Fig. 2i shows the XPS Ce(3d) spectra of 
the CeO2 nanoparticles and nanowires in the binding energy range of 
875–925 eV, the peaks positions and integrated areas of Ce3+ and Ce4+

ions are also listed in Tables S1 and S2. The Ce3+ concentration and 
corresponding oxygen vacancy concentration of CeO2 nanoparticles are 
calculated to be 35.7% and 8.9%, similarly to those of CeO2 nanowires 
which are calculated to be 36.1% and 9.1%. Fig. 2j gives the Zeta po-
tential of the CeO2 nanoparticles and nanowires with a pH of 7 in 
distilled water. The positive Zeta potential of both CeO2 nanoparticles 
(+12.1 mV) and nanowires (+13.0 mV) indicates a Lewis acidity, owing 

to the oxygen vacancies as Lewis acid sites. Moreover, the nitrogen 
adsorption isotherm results (Figs. S5 and S6) reveal that the specific 
surface area of as-synthesized nanoparticles and nanowires are 87.9 and 
99.9 m2 g− 1, respectively. The concentration of oxygen vacancy, Zeta 
potential and specific surface area data reveal similar surface properties 
of CeO2 nanowires and nanoparticles. 

The XRD patterns of the SPE-blank, CSPE-10NP and CSPE-10NW 
(Fig. 3a) clearly reveal that the characteristic peaks of PEO at 19◦ and 
23◦ become weaker in CSPE-10NP and CSPE-10NW [52,53], which 
implies their lower crystallinity. The DSC curves of these three polymer 
electrolytes (Fig. 3b) indicate that the glass transition temperature (Tg) 
of CSPE-10NW (− 41.6 ◦C) and CSPE-10NP (− 41.2 ◦C) are lower than 
that of SPE-blank (− 35.8 ◦C). The decrease of the Tg of the CSPEs with 
fillers indicates the lower crystalline state of PEO after the addition of 
CeO2 nanowires and nanoparticles. Remarkably, the difference in the 
crystallinity reduction between CSPE-10NP and CSPE-10NW is quite 
similar. Fig. 3c shows the FT-IR spectra for CSPE-10NW, SPE-blank, 
PEO, LiTFSI, and CeO2 nanowires in the 1500–1000 cm− 1 region. After 
the addition of CeO2 nanowires into the SPE, the peaks at 1335 and 
1204 cm− 1 attenuate in intensity and show fewer splits, which implies 
less TFSI− aggregates and more “free TFSI− ” in CSPE-10NW [53,54]. 
The Raman spectra of SPE-blank and CSPE-10NW are shown in the 
frequency range of 732–762 cm− 1 (Fig. 3d). The band at 740–744 cm− 1 

(P1) is attributed to the response of the free uncoordinated TFSI− , 

Fig. 2. (a) SEM image; (b), (c) TEM images, (d) high resolution TEM image and the corresponding FFT pattern (inset) of CeO2 nanowires; (e) HAADF-STEM image 
and corresponding elemental mappings of CSPE-10NW; (f) TEM image, diameter distribution (inset) and (g) high resolution TEM image of the CeO2 nanoparticles; (h) 
XRD patterns, (i) XPS spectra and (j) Zeta potential of CeO2 nanowires and nanoparticles. 
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whereas ion clusters (TFSI− coordinated with Li+) correspond to the 
band at 747–750 cm− 1 (P2) [54–56]. If we assume the scattering cross- 
sections of the free uncoordinated TFSI− and the ion cluster to be 
similar, the percentage of “free TFSI− ” can be calculated as follows [56]: 

[free TFSI− ] =
A(P1)

A(P1 + P2)
× 100% (1)  

where A(P1) is the integrated intensity of the P1 band and A(P2) is that 
of the P2 band. The percentage of free TFSI− in SPE-blank (Fig. 3d-I) is 
39.6%, indicating the abundant existence of ion clusters. In CSPE-10NW 
(Fig. 3d-II), the P2 band is greatly reduced and the percentage of free 
TFSI− reaches 77.0%, signifying the better dissociation of ion clusters. 
The solid-state 6Li NMR spectra for LiTFSI in CSPE-10NW and SPE-blank 
(Fig. 3e) show that the signal is shifted downfield in the CSPE-10NW 
(− 0.01 ppm) compared to SPE-blank (− 0.20 ppm). This downfield 
shift is indicative of reduced electron density around the Li atom, sug-
gesting looser coordination with the donating nitrogen electrons in the 
TFSI− , [57,58] which is possibly caused by the higher dissociation de-
gree of LiTFSI upon inducing CeO2 nanowires. This is in good line with 
the change of full width at half maximum (FWHM) from SPE-blank 
(0.18) to CSPE-10NW (0.22) in 7Li NMR spectra as demonstrated in 
Fig. S7. The lithium transference number (t+) of CSPE-10NW (0.47, 
Fig. 3f) and CSPE-10NP (0.40, Fig. S8) are almost 2 times higher than 
that of SPE-blank (0.19, Fig. S9), which demonstrates increased con-
centration of free Li+. 

Temperature-dependent ionic conductivity curves (Fig. 4a) reveal 
that the ionic conductivity improves with increasing temperature (from 
30 ◦C to 80 ◦C). A content of 10 wt% CeO2 nanowires was found to be 
optimal, and higher filler concentrations (12 wt% and 15 wt%) result in 
a decrease of the ionic conductivity in the CSPEs (Fig. S10). The 
reduction of the ionic conductivity with further increased concentra-
tions of CeO2 nanowires filler may be attributed to the agglomeration of 

nanowires and a decrease of the free-volume in the polymer [52,59]. 
The electrochemical impedance spectroscopy (EIS) spectra of CSPE- 
10NW at different temperatures (Fig. S11) show that the value of the 
impedance gradually decreases with increasing temperature. As shown 
in Fig. 4a and b, CSPE-10NW reaches a superior ionic conductivity of 
1.1 × 10− 3 S cm− 1 at 60 ◦C, which is well above that of SPE-blank 
(2.8 × 10− 4 S cm− 1) and almost 2 times higher than that of CSPE- 
10NP (5.9 × 10− 4 S cm− 1) at 60 ◦C. The improvement of Li+ conduc-
tivity is ascribed to the following two reasons: first, the reduction of the 
crystallinity of the PEO matrix; and second, the formation of fast Li+

conducting pathways near the surface of the CeO2 nanofillers which 
cause the Li salt to dissociate and release free Li+. The traditional Li+

conducting pathway without the dissociation function of CeO2 is 
regarded as Li+ slow conducting pathway. The crystallinity of PEO 
matrix in CSPE-10NW and CSPE-10NP is similar. The much higher ionic 
conductivity of CSPE-10NW in comparison with CSPE-10NP clearly il-
lustrates that the network of interwoven CeO2 nanowires forms a 
percolating system. In the polymer matrix nearby the nanowires, a 
continuous Li+ fast conducting percolation network through the SPE is 
formed. In CSPE-10NP, the fast Li+ conducting pathways also exist near 
the surface of the CeO2 nanoparticles but cannot form a percolation 
network. Therefore, the CSPE-10NP contains both fast and slow Li+

conducting pathways simultaneously, but no long-range fast conduc-
tivity pathways. By contrast, only Li+ slow conducting pathways exist in 
SPE-blank, which are responsible for its poor ionic conductivity. Note-
worthy, the ionic conductivity of CSPE-10NW is comparable with or 
even better than that of other Li+ conductive frameworks modified SPEs 
(Table S3), which suggests the validity of the Li+ fast conducting 
percolation network constructed by Li+-non-conducting CeO2 
nanowires. 

The electrochemical operating windows measured by linear sweep 
voltammetry (LSV) are shown in Fig. 4c. Both CSPE-10NW and CSPE- 
10NP exhibit a steady platform at approximately 5.1 V, which is much 

Fig. 3. (a) XRD patterns and (b) DSC curves of SPE-blank, CSPE-10NP and CSPE-10NW; (c) Fourier transform infrared (FTIR) spectra of CSPE-10NW, SPE-blank, 
PEO, LiTFSI, and CeO2 nanowires; (d) Raman spectra of CSPE-10NW and SPE-blank, fitted with the P1 and P2 bands; (e) Solid-state 6Li NMR spectra for CSPE-10NW 
and SPE-blank, (f) Chronoamperometry curves of Li/CSPE-10NW/Li cells at a potential of 10 mV at 60 ◦C, (inset) EIS spectra of the same cell before and after 
polarization. 
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higher than that of SPE-blank (~ 4.0 V). The stress-strain curves of the 
SPE-blank, CSPE-10NP and CSPE-10NW electrolytes are shown in 
Fig. S12, and the calculated Young’s modulus of CSPE-10NW 
(33.0 MPa) is much larger than those of the CSPE-10NP (6.97 MPa) 
and SPE-blank (1.87 MPa) samples. The interlinked networks of nano-
wires and strong cross-linking interactions between polymer chains and 
the nanowires can also improve the mechanical properties of the CSPE- 
10NW electrolytes. TGA analyzes of the above three types of electrolytes 
were conducted to evaluate their thermal stability (Fig. S13). The gal-
vanostatic cycling performances of Li/SPE/Li symmetric cells are tested 
at 0.25 mA cm− 2 for 1 h each cycle at 60 ◦C (Fig. 4d). As shown, the cell 
with CSPE-10NW has a low initial overpotential of 50 mV; subsequently, 
the overpotential gradually decreases to 45 mV, and then shows a slow 
and sustained growth, which is less than 56 mV even after 2000 h. In 
contrast, the cells with SPE-blank and CSPE-10NP have a higher initial 
overpotential (78 and 60 mV, respectively) and exhibit sudden short 
circuits after 587 (Fig. 4g) and 1443 (Fig. 4h) hours due to internal short 
circuits by lithium dendrites. EIS spectra of symmetric cells with above 
three types of SPEs at 60 ◦C before cycling are shown in Fig. 4e. The 
value of charge transfer resistance (Rct, semicircle in the EIS spectra) of 

the cells with CSPE-10NW and CSPE-10NP are much lower than that of 
the cell with SPE-blank, indicating that the addition of CeO2 nanofillers 
in the CSPEs is beneficial for the transportation of Li+. EIS spectra of Li/ 
CSPE-10NW/Li symmetric cell after different cycles are shown in 
Fig. S14. After approximately 500 h of cycling, massive irregular lithium 
dendrites could be observed on the Li anode of the symmetric cell using 
SPE-blank (Fig. S15). In sharp contrast, the Li anode of the symmetric 
cell using CSPE-10NW has a relatively uniform and smooth surface with 
only a few lithium dendrites (Fig. S16), which is ascribed to the high 
ionic conductivity, high Li+ transference number and superior me-
chanical property of the CSPE-10NW. 

All-solid-state LiFePO4/Li (LFP/Li) batteries using SPE-blank, CSPE- 
10NP and CSPE-10NW electrolytes were assembled to verify their sta-
bility and electrochemical performances in solid-state batteries (Fig. 5). 
The LFP/CSPE-10NW/Li cell delivers a specific capacity of 
164 mA h g− 1 after 100 cycles with a capacity retention of 98% at 0.1 C 
under 60 ◦C (Fig. 5a), approaching the theoretical capacity 
(172 mA h g− 1) of LiFePO4 cathode. The cell can still work even after 
280 cycles with a capacity retention of 91% (Fig. S18), indicating good 
cycling stability of the composite electrolyte. In contrast, the LFP/SPE- 

Fig. 4. (a) Temperature dependence of the ionic conductivities of nanocomposites with different content of nanowires from 30 ◦C to 80 ◦C. (b) Temperature 
dependence of the ionic conductivities and (c) linear sweep voltammetry of the SPE-blank, CSPE-10NP and CSPE-10NW samples. (d) Voltage profiles of the continued 
lithium plating/stripping cycling of Li/SPE-blank/Li, Li/CSPE-10NP/Li and Li/CSPE-10NW/Li symmetric cells with a current density of 0.25 mA cm− 2 at 60 ◦C. (e) 
EIS spectra of Li symmetric cells using the SPE-blank, CSPE-10NP and CSPE-10NW electrolytes at 60 ◦C before electrochemical cycling test. Selected voltage profiles 
of (f) the 0–5th, (g) 585th-590th, (h) 1441th-1446th. 
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blank/Li cell has a low initial specific capacity with poor cycling sta-
bility and short circuits after 45 cycles. The charge-discharge curves of 
the LFP/CSPE-10NW/Li cell at 0.1 C under 60 ◦C exhibit a small voltage 
polarization of 0.06 V even after 100 cycles (Fig. 5d). In comparison, the 
cell with the SPE-blank has a relatively low overpotential in the begin-
ning (0.07 V), but rapidly increased to 0.23 V after 40 cycles (Fig. S19). 
The LFP/CSPE-10NW/Li batteries exhibit good cycling performances at 
different current rates (Fig. 5b), maintaining discharge capacities of 158, 
150 and 140 mA h g− 1 at 0.2, 0.5 and 1 C, respectively, after 100 cycles. 
The 10th charge-discharge curves of the cells with CSPE-10NW at 
different current rates (Fig. 5e) show only a slight increase of the 
overpotential (0.07, 0.09 and 0.11 V at 0.2, 0.5 and 1 C, respectively). 
The LFP/Li cell using CSPE-10NW also exhibits good cycling stability 
even at 30 ◦C (Figs. 5c and S20), with a specific capacity of 
158 mA h g− 1 after 100 cycles and 150 mA h g− 1 even after 450 cycles 
at 0.1 C. In contrast, the LFP/Li cell using SPE-blank hardly works at 
30 ◦C. The overpotential indicated by the charge-discharge curves of the 
cells using CSPE-10NW (Fig. 5f) and SPE-blank (Fig. S21) are ~ 0.16 and 
~ 0.31 V at 0.1 C under 30 ◦C. The above mentioned favorable 
comprehensive performance of CSPE-10NW ensure that the all-solid- 
state batteries using this composite electrolyte possess excellent elec-
trochemical performance in terms of capacity, cycle life and rate 
capability. 

The binding energy of Li+ with TFSI− in LiTFSI can be predicted in 
DFT calculations. Chen et. al. [39] have been confirmed the dissociation 
process of LiTFSI salt in a thermodynamic method. Here we performed a 
dynamic method, DFT-based MD simulations to further evaluate the 
molecular interaction between the surface of CeO2 and LiTFSI. Fig. 6a 
shows the molecular structure model including the Li salt (LiTFSI) and 
CeO2 (with oxygen vacancy in the surface) in the initial (0 ps) and after 
2 ps MD simulation. The distance (D) evolution with increasing time 
between Li and N (Fig. 6b) shows that the two atoms oscillate about an 
equilibrium position with a gradually increasing amplitude. Interest-
ingly, after a critical point the distance increases sharply. Noteworthy 
that the Li–N distance increases from initially 2.05 to 3.98 Å after 2 ps 
MD simulation, which is much longer than an ordinary bond length. The 
dynamic change process of the LiTFSI can be seen in the video 

(Supporting Information). As shown in the video, the TFSI− ion performs 
a distinct rotation: In the initial stage, the oxygen atoms in TFSI− are 
away from the CeO2 surface, but they gradually rotate to the position 
near the surface of CeO2 with increasing time (Fig. 6a, b), which is in 
accordance with previous reports that positively charged oxygen va-
cancy can attract and interact with TFSI− . [37,38] Crystal orbital 
Hamilton population (COHP) is proved in retrieving the chemical 
bonding information [60,61]. We performed the COHP method to 
analyze the nature of the Li‒N bond in an isolated LiTFSI molecule and 
of the Li‒N bond in a LiTFSI near the surface of CeO2 after 0 ps and 2 ps 
MD simulation. In the COHP diagram, the resulting plane-wave-COHP- 
(E) plots draws negative (bonding) contributions to the upper part and 
positive (antibonding) to the lower part. No obvious antibonding peak 
exists in the COHP diagram of Li‒N bond in isolated LiTFSI molecule 
(Fig. S23). By contrast, an obvious antibonding peak presents in the 
COHP diagram of Li‒N bond in LiTFSI in the initial state of MD simu-
lation (yellow line, Fig. 6c), prefiguring instability of the Li‒N bond 
when LiTFSI is in the vicinity of CeO2 surface (with oxygen vacancy). 
The integrated-COHP of Li‒N bond in LiTFSI (from − 10 to 0 eV) at 0 ps 
is 0.193, while that at 2 ps is only − 0.012, indicating a strong bonding 
ability (bonding) at 0 ps and an extremely weak interaction 
(nonbonding) at 2 ps between the Li and N atoms. The DFT-based MD 
simulations and COHP analyses indicate that CeO2 with oxygen vacancy 
will help to dissociate LiTFSI and release free Li+, which agrees with the 
FTIR, Raman, solid-state NMR and the lithium transference number 
measurements. Therefore, as expected, an area enriched with free Li+

exists on the CeO2 surface within the CSPE forming fast conducting 
pathways. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2020.105475. 

3. Conclusion 

In summary, by bringing Li+-non-conducting fillers, interlinked 
CeO2 nanowires or CeO2 nanoparticles with surface oxygen vacancies 
into a solid polymer electrolyte (SPE), increased Li+ conductivity in the 
interface is observed. The surface oxygen vacancies have the function to 

Fig. 5. Cycling performances of the all-solid-state LFP/Li batteries (a) with SPE-blank, CSPE-10NP and CSPE-10NW at 0.1 C, (b) with CSPE-10NW at 0.2, 0.5 and 1 C 
under 60 ◦C and (c) with SPE-blank and CSPE-10NW at 0.1 C under 30 ◦C. Charge-discharge voltage profiles of the all-solid-state LFP/Li batteries with CSPE-10NW 
(d) at the 1st, 10th, 30th, 100th cycles at 0.1 C under 60 ◦C, (e) at the 10th cycle at 0.2, 0.5 and 1 C under 60 ◦C and (f) at the 1st, 10th, 30th, 100th cycles at 0.1 C 
under 30 ◦C. 
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catalytically dissociate Li-bis(trifluoromethanesulfonyl)imide (LiTFSI) 
thus creating in the polymer matrix nearby the nanowires a continuous 
Li+ fast conducting percolation network through the SPEs. As a result, 
the composite SPE with 10 wt% CeO2 nanowires has an improved Li+

ionic conductivity (1.1 × 10− 3 S cm− 1 at 60 ◦C). The Li symmetric cells 
with the composite electrolyte exhibit good cyclic stability (without 
short circuit after 2000 h) and the all-solid-state LFP/Li cells also possess 
a superior cycling performance (remained 140 mA h g− 1 at 1 C after 100 
cycles) at 60 ◦C. The present work provides a new strategy of con-
structing Li+ fast conducting percolation network through SPEs by 
filling easy-fabricated and low-cost Li+-non-conducting nanofillers, 
which will break a new path for the design of high-performance solid 
polymer electrolytes. 
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H. Delville, J.-C. Lassègues, Lithium solvation and diffusion in the 1-butyl-3- 
methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid, J. Raman 
Spectrosc. 39 (2008) 627–632. 

[55] J. Huang, A.F. Hollenkamp, Thermal behavior of ionic liquids containing the FSI 
anion and the Li+ cation, J. Phys. Chem. C 114 (2010) 21840–21847. 

[56] N. Chen, Y. Dai, Y. Xing, L. Wang, C. Guo, R. Chen, S. Guo, F. Wu, Biomimetic ant- 
nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries, 
Energy Environ. Sci. 10 (2017) 1660–1667. 

[57] D.G. Mackanic, W. Michaels, M. Lee, D. Feng, J. Lopez, J. Qin, Y. Cui, Z. Bao, 
Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte, 
Adv. Energy Mater. 8 (2018), 1800703. 

[58] W. Li, C. Sun, J. Jin, Y. Li, C. Chen, Z. Wen, Realization of the Li+ domain diffusion 
effect via constructing molecular brushes on the LLZTO surface and its application 
in all-solid-state lithium batteries, J. Mater. Chem. A 7 (2019) 27304–27312. 

[59] S. Suriyakumar, S. Gopi, M. Kathiresan, S. Bose, E.B. Gowd, J.R. Nair, 
N. Angulakshmi, G. Meligrana, F. Bella, C. Gerbaldi, A.M. Stephan, Metal organic 

X. Ao et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref7
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref7
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref8
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref8
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref8
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref9
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref9
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref10
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref10
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref11
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref11
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref12
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref12
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref12
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref13
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref13
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref13
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref13
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref14
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref14
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref14
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref14
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref15
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref15
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref15
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref16
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref16
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref16
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref17
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref17
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref17
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref18
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref18
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref18
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref19
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref19
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref19
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref20
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref20
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref20
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref21
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref21
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref21
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref22
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref22
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref22
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref23
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref23
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref23
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref24
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref24
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref25
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref25
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref25
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref25
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref26
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref26
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref26
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref27
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref27
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref27
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref28
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref28
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref28
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref29
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref29
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref29
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref29
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref29
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref30
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref30
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref30
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref31
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref31
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref31
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref32
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref32
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref32
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref33
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref33
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref33
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref34
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref34
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref35
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref35
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref35
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref35
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref36
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref36
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref37
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref37
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref37
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref38
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref38
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref38
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref39
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref39
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref39
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref39
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref40
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref40
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref40
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref40
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref41
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref41
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref41
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref41
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref42
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref42
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref42
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref43
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref43
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref43
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref44
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref44
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref44
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref45
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref45
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref45
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref45
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref46
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref46
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref46
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref46
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref47
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref47
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref47
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref47
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref48
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref48
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref48
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref49
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref49
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref49
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref50
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref50
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref50
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref51
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref51
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref51
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref51
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref52
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref52
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref52
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref53
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref53
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref53
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref53
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref54
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref54
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref54
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref54
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref55
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref55
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref56
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref56
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref56
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref57
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref57
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref57
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref58
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref58
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref58
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref59
http://refhub.elsevier.com/S2211-2855(20)31050-8/sbref59


Nano Energy 79 (2021) 105475

9

framework laden poly(ethylene oxide) based composite electrolytes for all-solid- 
state Li-S and Li-metal polymer batteries, Electrochim. Acta 285 (2018) 355–364. 

[60] V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal orbital hamilton 
population (COHP) analysis as projected from plane-wave basis sets, J. Phys. 
Chem. A 115 (2011) 5461–5466. 
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