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Abstract: High-entropy alloys (HEAs) as a new class of alloy have been at the cutting edge of
advanced metallic materials research in the last decade. With unique chemical and topological
structures at the atomic level, HEAs own a combination of extraordinary properties and show
potential in widespread applications. However, their phase stability/transition, which is of great
scientific and technical importance for materials, has been mainly explored by varying temperature.
Recently, pressure as another fundamental and powerful parameter has been introduced to the
experimental study of HEAs. Many interesting reversible/irreversible phase transitions that were not
expected or otherwise invisible before have been observed by applying high pressure. These recent
findings bring new insight into the stability of HEAs, deepens our understanding of HEAs, and open
up new avenues towards developing new HEAs. In this paper, we review recent results in various
HEAs obtained using in situ static high-pressure synchrotron radiation x-ray techniques and provide
some perspectives for future research.
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1. Introduction

Developing multicomponent metallic alloys with superior properties has played a vital role
in the advancement of human civilizations since the Bronze Age. Conventional metallic alloys
are usually based on one or two principle elements, such as Fe-, Al-, Mg-, and TiAl- based alloys.
Adding alloying elements into the host lattice of the principle elements forming solid solutions has
been the major strategy to optimize the microstructures and properties of alloys. However, in the
traditional metallurgy, the development of alloys was restricted by the limited solubility of the alloying
element in the solvent lattice, which leaves the areas besides the corner of their multicomponent phase
diagrams unexplored. Deviation from the phase diagram corner was believed to readily result in the
formation of useless, brittle intermetallic compounds. In 2004, Yeh et al. and Cantor et al.’s discoveries
of single solid-solution phase alloys formed with multi-principal elements challenged the traditional
metallurgy experience and established an exciting new concept for alloy design. By mixing five or
more elements with equimolar or near-equimolar ratios, the system could be stabilized in a single
phase solid-solution by their maximized configurational entropy [1,2]. Since then, this new class
of so-called high-entropy alloys (HEAs) has attracted considerable attention and research interests
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in the advanced metallic materials community [3–5]. Numerous new HEAs have been developed
with simple crystal structures such as face-centered cubic (fcc) [1,2], body-centered cubic (bcc) [1,6,7],
and hexagonal close-packing (hcp) [8–12]. With unique compositions and atomic structures, HEAs show
many interesting properties for potential applications, such as high ductility and strength over a wide
temperature range and excellent resistance to both corrosion and wear [13–21]. On the other hand,
due to their complex composition with a high chemical disorder, many fundamental questions of the
HEAs remains challenging to address [3,22,23].

One of the critical unsolved questions about HEAs is their phase stability. Many pure elements in
the periodic table show rich polymorphic phase transitions [24]. By mapping out the phase diagram
(transition paths) with varying temperature and pressure, the phase stability of each structure can be
clarified. A famous example is iron. Phase transitions between three different prototype polymorphs
with fcc, hcp, and bcc structures were extensively studied in iron [25–27]. The bcc phase of iron was
confirmed to be stable at ambient conditions, while the fcc phase is stable at high temperatures
and the hcp phase is favorable at high pressures. As a combination of multiple elements, HEAs do
not simply inherit the structure and properties of their constituent elements as expected with a
“linear effect” [28]. Regardless of the various compositions and structures, HEAs are reported to be
surprisingly stable over a large temperature range in previous experiments. It is believed that HEAs
are thermodynamically stabilized by their high configurational entropy which can largely lower down
the Gibbs free energy. Also, the high chemical complexity and packing disorder cause severe local
lattice distortion and extremely sluggish atomic diffusion in HEAs, which could further stabilize HEAs
kinetically. For instance, the equiatomic CoCrFeMnNi alloy (also named as Cantor’s alloy) [2], is a
prototype fcc-structured HEA. Extensive studies demonstrate that the Cantor’s alloy can maintain its
fcc structure from cryogenic temperatures up to its melting temperature without any polymorphic
phase transition [13,29–31].

It has been empirically established that the competition between configuration entropy and
enthalpy, the difference between the atomic radius and electronegativity of constituent elements [32–34],
and also the overall valence electron concentration [35] are a few key thermodynamic parameters for the
formation of HEAs. All these parameters are very susceptible to pressure tuning. Actually, pressure is a
very powerful tool to tune the atomic/electronic structure of various materials and has been employed
to understand materials and to search for novel materials through rich pressure-induced phase
transitions in diverse systems, such as pure elements [24], alloys [36–42], oxides [43–46], and metallic
glass [47–49]. Among them, the Ce3Al system is of particular interest, where a pressure-induced
intermetallic compound and metallic glass to fcc solid solution transitions were discovered due to
the significant reduction of the difference between both the atomic radii and electronegativity of Ce
and Al during compression [42,49]. For HEAs, their synthesis process is closely associated with the
competition between intermetallic compounds, metallic glasses, and simple crystalline solid solutions.
Therefore, in contrast to the seeming “ultra-stability” during heating or cooling, HEAs might exhibit
rich tunable behavior under high pressure.

Very recently, the structural stability of various HEA systems has been explored using in situ
high-pressure synchrotron radiation-based x-ray diffraction techniques. Many interesting polymorphic
transitions have been discovered. These results are summarized in Table 1 and are subsequently
reviewed in detail. The microstructural and compositional metastability of HEAs was nicely reviewed
by Wei et al. [50]. In this paper, we focus on very recent results about phase stability and transitions
under high pressure and provide a brief review of the relevant experimental methods, issues,
and perspectives for future study.
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Table 1. A summary of the pressure-induced polymorphic transitions in high-entropy alloys (HEAs)
investigated by in situ high-pressure XRD (ME: methanol:ethanol = 4:1 (volume ratio) mixture;
MEW: methanol:ethanol:water = 16:3:1 (volume ratio) mixture).

Composition Initial
Structure

Synthesis
Method

Grain Size
(µm)

Pressure
Medium

Max. P
(GPa)

Transition
P (GPa)

Phase
Transition Ref.

CoCrFeMnNi fcc Homogenization / Silicone oil 54.1 14.7 fcc-hcp [51]

CoCrFeMnNi fcc Gas-atomization ~ 5 Helium 22.1 41.1 fcc-hcp [52]

CoCrFeMnNi fcc Gas-atomization ~ 5 Silicone oil 6.9 31.4 fcc-hcp [53]

CoCrFeMnNi fcc Gas-atomization ~ 5 Amorphous
boron 2.2–6.6 36.6 fcc-hcp [53]

CoCrFeMnNi fcc High pressure
tortion ~ 0.01 Silicone oil 12.3 31.4 fcc-hcp [53]

CoCrFeMnNi fcc Cold rolled ~ 100 Neon 7.1 20 fcc-hcp [54]

CoCrFeMnNi fcc / / Neon / 48.9 no [55]

CoCrFeMnNi fcc High pressure
sintered ~ 0.1 Silicone oil / 31 no [56]

CoCrFeCuNi fcc High pressure
sintered ~ 0.1 Silicone oil / 31 no [56]

NiCoCrFe fcc Homogenization / ME 13.5 39 fcc-hcp [57]

NiCoCr fcc Homogenization / ME 45 45 fcc-hcp [57]

NiCoCrFePd fcc Homogenization / Neon / 74 no [57]

CoCrCuFeNiPr dual fcc Milled powder / Silicone oil / 106.4 disordered-ordered
fcc [58]

Al0.3CoCrFeNi fcc Annealed ~ 100 Neon / 61 no [59]

AlCoCrCuFeNi fcc+bcc As-cast / MEW / 24 no [60]

AlCoCrFeNi bcc Melt-spun
ribbon / Silicone oil /17.6 42 b2–distorted bcc [61]

Al0.6CoCrFeNi bcc Gas-atomization ~ 10 Silicone
oil/Helium 10.6 40 bcc-orthorhombic-

bct [62]

Al0.6CoCrFeNi fcc Gas-atomization
+ Annealed ~ 5 Silicone

oil/Helium 17.5 40 fcc-hcp [62]

TiZrHfNb bcc / / Neon / 50.8 no [55]

Al2CoCrFeNi bcc Annealed ~ 100 Neon / 61 no [59]

(TaNb)0.67(HfZrTi)0.33 bcc As-cast / / / 96 no [63]

ReRuCoFe hcp / / Neon / 80.4 no [55]

Ir0.19Os0.22Re0.21Rh0.20Ru0.19 hcp / / / / 45 no [64]

HoDyYGdTb hcp As-cast / Silicone oil / 60.1 hcp→Sm-type→
dhcp→dfcc [65]

2. Experimental Methods

Diamond anvil cells (DACs) are the most commonly used device to generate high pressure for the
in situ studies of materials. DACs are versatile devices for generating pressures up to hundreds of GPa
and for combining a full range of in situ measurements [66]. DACs are composed of two opposing
diamond anvils that squeeze materials in between them to generate hydrostatic/non-hydrostatic
pressure. Since diamonds are transparent to almost the entire electromagnetic spectrum, various in
situ electromagnetic radiation detection approaches can be employed to study the structure and
properties of samples inside DACs, such as in situ x-ray and neutron diffraction techniques,
x-ray emission/absorption spectroscopy, Raman spectroscopy, and Brillouin scattering. Among them,
in situ angular dispersive x-ray diffraction (XRD) based on an intense synchrotron radiation x-ray
source is the primary technique in the high-pressure structural study of various materials [67].

The size of the DAC anvil culets is typically small with a diameter of approx. 500 µm to 20 µm
depending on the target maximum pressure. The sample chamber is a small hole (with a diameter of
approx. 1/3 of the culet size and a height of approx. 50 µm to 30 µm) drilled in the gasket indent which
is pre-indented by the two anvils. Therefore, only tiny samples with a typical maximum dimension less
than tens of microns can be accommodated in the sample chamber in a DAC. Particularly, the sample
thickness should be less than the height of the gasket hole during the entire compression process
to avoid bridging the anvils (otherwise, it will be uniaxially compressed with large shear stress).
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Metals with high shear strength such as T301 stainless steel, Re, and W are usually used as the
gasket materials for typical high-pressure experiments. Different pressure transmitting mediums
(including solid, liquid, and gas) can be selected based on the target pressure range and the required
degree of hydrostaticity or operational convenience in the experiment. The pressure in the sample
chamber can be determined either by the pressure–volume (P–V) equation of state (EOS) of standard
materials (e.g., MgO, NaCl, Au, and Pt) using in situ high-pressure XRD [68] or by the ruby fluorescence
peak shift excited by an optical laser or x-ray [69]. The standard material or ruby balls should be
loaded close to the sample in the sample chamber to minimize the pressure difference. Due to the
small sample volume, a high-brightness synchrotron radiation X-ray beam focused down to tens of
microns (<20 µm) is required. To go through the two thick diamond anvils (3–5 mm in total) and to
cover a large enough range in d space with the limited two-theta opening of DACs, a high-energy
x-ray is usually required (>20 keV). Using in situ high-pressure synchrotron radiation XRD diffraction
coupled with a DAC (a typical experimental setup is shown in Figure 1), researchers have been able to
obtain detailed structural information of samples as a function of pressure, including their unit cell
parameters, atomic positions, thermal parameters, and even electron density distributions.
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Figure 1. A schematic illustration of the in situ high-pressure synchrotron radiation XRD setup using a
diamond anvil cell (DAC).

3. Structural Stability and Evolution of HEAs under High Pressure

Over the last fourteen years, intense effort has been devoted to developing numerous HEAs,
which provides hundreds of new alloys for fundamental and applied studies. Recently, the structural
stability of some typical HEAs has been investigated using in situ high-pressure synchrotron
radiation XRD. Herein, we briefly review these results in separate groups according to their initial
crystal structures.

3.1. Fcc-Structured HEAs

Among the various HEAs, single-phase fcc-structured alloy systems tend to show a relatively
low yield strength but an excellent ductility and strain hardening capability. The CoCrFeMnNi
(Cantor’s alloy) as a prototype fcc-structured HEA has attracted the most extensive investigation.
Cantor’s alloy shows high structural stability over a broad temperature range at ambient pressures
(from extreme low temperature (~3 K) up to its melting temperature) [13,29–31]. In contrast,
Cantor’s alloy undergoes unexpected polymorphic transformations from fcc to hcp phases under
applied high pressure [51–54]. Under the best hydrostatic pressure conditions provided by the
pressure-medium helium, the fcc to hcp phase transition starts at approx. 22 GPa but does not fully
complete even up to approx. 41 GPa (Figure 2a) [52]. The transition is sluggish and irreversible. The hcp
phase can be retained during the decompression down to ambient pressure, as shown in Figure 2b.
The fabricated hcp CoCrFeMnNi HEA can almost maintain its volume fraction during decompression.



Entropy 2019, 21, 239 5 of 16

Therefore, hcp-fcc dual-phase composites with tunable volume fractions can be readily synthesized by
decompression from different maximum pressures between approx. 22 and 41 GPa (Figure 2a) [52].
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Figure 2. (a) The in situ high-pressure XRD patterns of the CoCrFeMnNi HEA under high pressure in
a DAC at room temperature [52]: The x-ray wavelength is 0.2952 Å and (b) the change of the hcp phase
volume fraction as a function of pressure during compression (solid symbols) and decompression
(open symbols). The volume fractions of the hcp phase were calculated based on the peak area changes
of the fcc-(200) (blue circles) and hcp-(101) peaks (red squares) in Figure 2a, which yield consistent
results of the volume fractions. During decompression, the volume fraction of the hcp almost remains
constant, which makes the synthesis of the hcp-fcc dual-phase composite possible by following a
different decompression path, as shown by the dashed arrows [52].

According to previous theoretical simulations, the Gibbs free energy of the hcp phase of the
CoCrFeMnNi HEA may be smaller than its well-known fcc phase at room temperature [70,71].
However, there was no clear experimental evidence to confirm the simulation results. For example,
the CoCrFeMnNi HEA samples synthesized by various melt-quenching methods always only show an
fcc structure, and the irreversibility of the fcc to hcp phase transition under high pressure also questions
the relative stability of the fcc and hcp phases [51,53,54]. To clarify the phase stability, the synthesized
hcp phase was further examined using in situ high-temperature XRD measurements at different
pressures [52]. During heating at constant pressures, the hcp phase transforms back to the fcc phase
and the critical transition temperatures increase with increasing pressure. Therefore, these results
demonstrate that the well-known fcc phase of the CoCrFeMnNi HEA is thermodynamically favorable
at high temperatures. In contrast, the hcp phase is indeed more stable at relatively lower temperatures
and higher pressures [52].



Entropy 2019, 21, 239 6 of 16

The pressure-induced fcc to hcp polymorphic transition has been observed in Cantor’s alloy by
independent research groups. However, quite different onset pressures were reported ranging from
approx. 7 GPa to even above 49 GPa [51,53–55]. Tracy et al. loaded a CoCrFeMnNi HEA sample
(annealed at 1200 ◦C for 24 h) in a DAC with silicone oil as the pressure medium and compressed it
up to 54.1 GPa. A sluggish martensitic transformation from the fcc to an hcp phase was also observed
starting at approx. 14 GPa [51]; Huang et al. reported that the fcc to hcp phase transition occurred
at approx. 7.1 GPa in a CoCrFeMnNi HEA sample. The initial sample was processed by a series of
heating, cold rolling, and milling and then loaded into a DAC with neon as the pressure medium [54];
Yu et al. prepared a nanograined (approx. 100 nm) CoCrFeMnNi HEA sample by mechanical alloying
and a high-pressure sintering process. They compressed the sample with silicone oil as the pressure
medium in a DAC up to 31GPa, but no phase transition was observed [56]. Ahmad et al. investigated
the structure of Cantor’s alloy up to approx. 49 GPa with neon as the pressure-transmitting medium
in a DAC. Surprisingly, no obvious phase transition was observed as well [55]. This experimental
inconsistency suggests that the polymorphic phase transition in Cantor’s alloy may be susceptible to
the sample and experimental conditions, such as the different sample grain sizes and different pressure
mediums used in the experiments above.

To clarify this speculation, Zhang et al. [52] systematically investigated the effect of the
non-hydrostaticity of the pressure environment and the grain size of the samples on their
pressure-induced phase transitions. The experiments were carefully designed to study only one
factor at each time. To address the effect of the pressure environment, they loaded the same
sample with three distinct pressure mediums with different degrees of hydrostaticity, such as helium
(the most hydrostatic), amorphous boron (the most non-hydrostatic), and silicone oil (quasi-hydrostatic
in-between). According to the in situ high-pressure XRD results (as shown in Figure 3), the onset
pressures for the fcc to hcp transition were estimated to be approx. 22 GPa in helium, approx. 2 to 6 GPa
in amorphous boron, and approx. 7 GPa in silicone oil. These results demonstrate that the degree of
the pressure medium’s hydrostaticity has a positive effect on the onset pressure of the fcc-to-hcp phase
transition in Cantor’s alloy [53].Entropy 2019, 21, x FOR PEER REVIEW 7 of 16 
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Figure 3. The in situ high-pressure XRD patterns of the CoCrFeMnNi HEA sample with helium (a),
silicone oil (b), and amorphous boron (c) as the pressure mediums [53].

To study the effect of grain size (an important internal factor) on the pressure-induced phase
transition in the CoCrFeMnNi HEA, Zhang et al. [53] loaded two distinct samples into one sample
chamber in a symmetric DAC. The two samples were carefully located with equivalent positions
to the chamber center to ensure they had identical pressure environments. To highlight the grain
size effect, the two selected samples had a huge difference in grain size; one was synthesized by
gas-atomization (GA) (approx. 5 µm), and the other was obtained by high-pressure torsion (HPT)
(approx. 10 nm). When the two samples were compressed from 0.3 GPa up to 31.4 GPa, both of them
showed an fcc-to-hcp phase transition but with quite different onset pressures (as shown in Figure 4).
For the HPT sample with nano-sized grains, the phase transition was observed from approx. 12.3 GPa,
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while the GA sample with a bigger grain size had a much lower onset pressure of approx. 6.9 GPa.
The underlying mechanism is still not clear and calls for further investigation [53].
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The effect of different alloying elements on the pressure-induced polymorphic phase transition
was investigated by Zhang et al. [57] in three fcc-structured medium-entropy alloys and HEAs (NiCoCr,
NiCoCrFe, and NiCoCrFePd). They observed a similar martensitic phase transition from fcc to hcp in
the CoCrFeNi alloy starting at approx. 13.5 GPa, as shown in Figure 5a. This phase transformation
was also sluggish and irreversible, as reported in Cantor’s alloy. The volume fraction of the hcp phase
was only about 36% when the pressure reached 39 GPa. However, with different alloying elements,
the NiCoCr and NiCoCrFePd alloys exhibited distinct compression behaviors under high pressure,
as shown in Figure 5b,c, respectively. Only a small amount (<5 wt.%) of the hcp phase emerged
at 34.4 GPa in the NiCoCr alloy, and its amount barely changes with increasing pressure. In the
NiCoCrFePd system, as the element Mn in the Cantor’s alloy is replaced by the Pd, no obvious hcp
phase emerges up to 74 GPa [57].
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Many of the HEAs have a minor second phase. Ma et al. [58] investigated an equiatomic
CoCrCuFeNiPr HEA sample with dual phases (major disordered-fcc and minor ordered-fcc phases)
using in situ synchrotron radiation high-pressure energy-dispersive XRD (EDXRD). They observed a
pressure-induced fast ordering transition from approx. 8 GPa to 16.0 GPa followed by a slow transition
up to 106.4 GPa. The initially ordered domain in the CoCrCuFeNiPr HEA was believed to act as
embryos. With increasing pressure, the embryos grow into the ordered phase [58].

3.2. Bcc-Structured HEAs

In addition to the fcc-structured HEAs, bcc-structured alloys are another major member of the
HEA family, which include both the chemically disordered A2 and ordered B2 phases. Bcc-structured
HEAs often exhibit high yield strength in a very high-temperature regime. Therefore, the stability of
the bcc-structured HEAs is an exciting topic that has been explored extensively at various conditions,
recently also by high pressure.

Ahmad et al. investigated the structural stability of a TiZrHfNb alloy with a disordered bcc
structure during compression up to 50.8 GPa; no phase transition was found [55]. Yusenko et al.
explored another bcc-structured Al2CoCrFeNi HEA; it had no phase transition up to 60 GPa as
well [59]. Guo et al. studied the structural evolution of a superconducting (TaNb)0.67(HfZrTi)0.33 HEA
during compression up to approx. 100 GPa; its bcc structure seemed very robust without any detectable
structural transition [63]. No phase transition has ever observed in the bcc-structured HEAs. Therefore,
it seems that the bcc-structured HEAs are incredibly stable, and much higher pressure may be needed
to induce phase transitions (compared to the fcc family).

To lower down the transition pressure of possible polymorphic phase transitions, Cheng et al. [61]
employed a creative strategy to focus on relatively less stable compositions. They chose an equiatomic
AlCoCrFeNi HEA and monitored its structural evolution during compression up to 42 GPa.
The AlCoCrFeNi alloy had an ordered bcc-structure (B2 phase) and was reported to sit in the transition
zone between the fcc and bcc phases, as x varies in the AlxCoCrFeNi HEA system (0 < x < 2) [72]. Indeed,
they discovered a phase transition from the initial B2 phase to a highly distorted form starting at
relatively low pressure of approx. 17.6 GPa, by combining ex situ high-resolution transmission electron
microscope (HRTEM) with in situ high-pressure synchrotron radiation XRD data, as shown in Figure 6.
Besides the XRD peak splitting, severe peak weakening and broadening occurred during compression,
which may have been caused by the significant lattice distortion developed in the sample. Therefore,
their work was unable to resolve the atomic structure of the high-pressure phase. Nevertheless, it is
the first time that a pressure-induced polymorphism was suggested in a bcc-structured HEA [61].
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in situ high-pressure XRD patterns at room temperature (a) and the locally enlarged plot of the XRD
patterns for each peak upon compression (b) and decompression (c) to show more details of the peak
shape and width: The x-ray wavelength is 0.4959 Å [61].

With slightly lower Al content but still located in the bcc-fcc transition zone, the Al0.6CoCrFeNi
HEA was studied by Wang et al. using in situ synchrotron radiation XRD in a DAC with both silicone
oil and helium as the pressure-transmitting medium up to approx. 40 GPa [62]. The Al0.6CoCrFeNi
HEA powders were prepared by the GA method. A single bcc phase was obtained with a high
quenching rate in the GA process. They revealed a bcc-to-orthorhombic phase transition, which started
at approx. 10.6 GPa and completed at approx. 21.4 GPa. Interestingly, another body-center-tetragonal
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(bct) phase emerged and coexisted with the high-pressure synthesized orthorhombic phase when
the pressure was released. These results indicate that the orthorhombic phase may be metastable at
ambient conditions but could be partially maintained due to the possible large energy barrier [62].
Moreover, after annealing at 1000 ◦C for 2 h, the initial GA bcc Al0.6CoCrFeNi HEA can transform into
a more stable fcc phase. During compression, the fcc phase of the Al0.6CoCrFeNi HEA could completely
transform into an hcp phase similar to Cantor’s alloy. The samples recovered from high-pressure
compression were characterized by transmission electron microscopy (TEM) and further confirmed
that all of the five polymorphs could stably/metastably exist at ambient conditions (transition path
between them is shown in Figure 7). Severe lattice distortion, which is tunable by high pressure or
temperature was suggested to play a crucial role in the formation of various polymorphs and the
transition between them in the Al0.6CoCrFeNi HEA. These findings suggest that HEAs could behave
quite differently from the expectation of a linear combination of its constituent element; they may also
exhibit structural flexibility/tunability far beyond that of their solution components [62].
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3.3. Hcp-Structured HEAs

HEAs commonly form with fcc or bcc structures. Recently, hcp-structured HEAs were observed
in high-pressure experiments via an fcc to hcp polymorphic transition and was obtained in the
melt-quenched alloys mainly consisting of heavy hcp metals, e.g., the CoOsReRu, CoFeReRu and
CoReRuV, Ir0.19Os0.22Re0.21Rh0.20Ru0.19, or rare earth hcp elements [8–12]. Ahmad et al. [55]
investigated the structural stability of the quarternary equiatomic ReRuCoFe alloy under high pressure.
They compressed the sample from 0.9 GPa to 80.4 GPa in a DAC. The unit cell parameters of a
and c, its ratio a/c, and the sample volume all continuously decreased with increasing pressure,
which indicates the hcp structure of the ReRuCoFe alloy is stable under compression up to approx.
80 GPa. Yusenko et al. investigated the structural stability of the hcp Ir0.19Os0.22Re0.21Rh0.20Ru0.19 HEA
at room temperature during compression up to 45 GPa but also observed no phase transition [64].

For the hcp-structured rare earth HEAs, Yu et al. reported a series of pressure-induced
phase transitions in the HoDyYGdTb HEA by in situ XRD measurements in a DAC using
synchrotron radiation x-ray. Four polymorphs were observed following a transition sequence of
hcp→Sm-type→dhcp→dfcc during compression up to 60.1 GPa (Figure 8), which resembles the rich
pressure-induced polymorphic transitions in its constituent elements [65]. The Sm-type phase firstly
appeared when the pressure reached 4.4 GPa. At 13.6 GPa, the hcp (102) diffraction peak disappeared,
indicating the completion of the hcp to Sm-type phase transition. With further increasing pressure to
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26.7 GPa, the dhcp phase emerged and persisted to 38.3 GPa, and then, the dhcp-dfcc phase transition
occurred at 40.2 GPa.
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4. Conclusions and Outlooks

HEAs are the focus of advanced metallic alloy research and have been attracting more and more
attention over the last decade. Recent studies on HEAs under high pressure have added another
dimension to the exploration of HEAs. The exciting findings in HEAs during compression under
high pressure deepen our understanding of HEAs, providing a new avenue towards new HEAs
development and helpful guidance for applications at extreme conditions. As a new research direction,
growing interest in the structure and properties of HEAs under high pressure is expected to continue.
Future outlooks are briefly summarized below:

(1) Synergic effect of pressure–composition–temperature. HEAs open up an almost infinite
composition space for alloy design. Hundreds of different HEAs have been developed, but so far,
only a few of them have been studied under high pressure. Inspired by the existing high-pressure
work, more exciting novel phenomena and new structures are expected with broader exploration in
more HEAs. Meanwhile, the elusive composition effect on the phase transitions of HEAs remains to be
addressed. Besides, combining high pressure with temperature (from cryogenic temperatures up to
the melting temperatures) can further clarify the stability of various HEAs and is worth more effort in
future research.

(2) Combing multiple high-pressure techniques for better understanding of HEAs. Over the last
few years, the major high-pressure research of HEAs has focused on the crystal structure evolution
during compression and decompression. However, we still lack an in-depth understanding of the
transformation mechanism. The atomic size ratio, electronegativity difference, valence electron
concentration, magnetic states, etc., which are all critical for the formation and transformation of HEAs,
have not been systematically explored under high pressure yet. To get more detailed information of
the atomic and electronic structure of the multicomponent HEAs under high pressure, besides XRD
measurements, more experiments combining other powerful in situ element-sensitive techniques
are required, such as in situ high-pressure extended x-ray absorption fine structure (EXAFS), in situ
high-pressure x-ray emission spectroscopy (XES), and in situ high-pressure x-ray magnetic circular
dichroism (XMCD).
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(3) Involving more variables for high-pressure studies of HEAs. Existing studies have shown
that the phase transitions of HEAs are sensitive to shear stress. Therefore, high-pressure torsion (HPT)
which generates extreme shear deformation under high pressure could be another powerful technique
for HEAs structure tuning with well-controlled shear stress and deformation. In addition, the results
reviewed in this paper focus on the static compression of HEAs using DACs. The strain rate effect on
the high-pressure behaviors of HEAs has not been extensively investigated. The dynamic compression
of HEAs with another dimension of an extremely high strain rate is also worth more exploration.

(4) Properties studies of HEAs using large-volume press. With unique compositions and
disordered atomic structures, HEAs show many unusual properties. Under high-pressure compression,
HEAs with new structure could be synthesized. Meanwhile, the grain size and defects could also
be considerably changed, which could affect their properties as well. Guo et al. measured the
superconducting behavior of the (TaNb)0.67(HfZrTi)0.33 HEA under high pressure. They surprisingly
observed extraordinarily robust superconductivity even up to 190.6 GPa [63]. Although the properties
of HEAs under high pressure may be interesting, besides the equation of states (EOS) which can be
readily measured by in situ XRD in DACs, the vast other properties have not been well-studied.
One critical issue of the DAC samples is the requisite tiny sample size. Fortunately, since the
critical pressures reported for the polymorphic transitions in HEAs are mostly around 20 GPa or
below, a large-volume press (LVP) with approx. 1000 times larger sample volumes than DACs
under similar pressure conditions (typically <25 GPa) [73] could be used to synthesize millimeter or
centimeter-sized HEAs readily for various properties characterization. Very recently, Yu et al. used a
10-MN double-stage LVP and compressed Cantor’s alloy with a diameter of 1.5 mm and a height of
2 mm to 20 GPa [74]. They synthesized a bulk equiatomic CoCrFeMnNi HEA containing a mixture of
fcc and hcp phases for property characterization. Cantor’s alloy recovered from high-pressure treatment
(20 GPa) showed a doubled hardness of the as-cast fcc samples because of enhanced dislocations, twins,
stacking faults, and the hcp laths [74].

(5) Theoretical calculations. Recent progress in the experimental discovery of the polymorphic
phase transitions in HEAs was first inspired by the finite-temperature ab initio calculation work done by
Ma et al., which predicted that the hcp phase in certain magnetic states would be more stable than the
fcc phase of Cantor’s alloy at room temperature [70]. HEAs with complex compositions are a challenge
for theoretical simulations, but it is quite encouraging that much exciting work has been successfully
done on HEAs [23,75]. In the high-pressure community, many calculation methods have also been
successfully established to handle materials under high pressure [76–78]. Theoretical simulations
definitely will continue to play a vital part in predicting new phenomena and in interpreting elusive
experimental results of HEAs. So far, there is still limited computational calculation works on the
high-pressure behaviors of HEAs. However, we believe more exciting works can be expected in HEAs
under high pressure by combing advanced experimental tools with simulation methods closely.

The concept of high entropy has been extended into many material systems including
high-entropy nitrides, carbides, oxides, and metallic glasses. Therefore, the proposed research above is
suitable for other new high-entropy materials as well.
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