Computational Materials Science 148 (2018) 157-164

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

First principles studies of superhard BC₆N phases with unexpected 1D metallicity

Yufei Gao^a, Yingju Wu^a, Quan Huang^b, Mengdong Ma^a, Yilong Pan^a, Mei Xiong^a, Zihe Li^a, Zhisheng Zhao^a, Julong He^a, Dongli Yu^{a,*}

^a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei Province, China ^b Center for High Pressure Science & Technology Advanced Research 1690 Cailun Rd, Bldg. #6, Pudong, Shanghai 201203, China

ABSTRACT

Three novel sp^2-sp^3 hybridized BC₆N phases with a sandwich structure, including a type of orthorhombic BC₆N (o-BC₆N) and two types of tetragonal BC₆N (t-BC₆N-1 and t-BC₆N-2), are investigated through first principles calculations. The structural stabilities are confirmed by the calculated elastic constants and phonon dispersions. Calculated electronic band structures, density of states (DOS), and partial DOS show that the o-BC₆N, t-BC₆N-1, and t-BC₆N-2 crystals may possess the metallicity with the conducting electrons from the p orbits of sp^2 -hybridized C atoms. Calculations of electron orbits indicate that the electrons in o-BC₆N and t-BC₆N-1 structures can conduct through the π bonds along the orientation parallel to the [1 0 0] and [0 1 0] directions in different layers. Moreover, the electrons in t-BC₆N-2 structure can conduct along the orientation parallel to the [1 1 0] and [1 1 0] directions in the layer and vertical direction of conduction between the adjacent layers imply that the three kinds of crystals have potential applications in the field-effect devices. Calculation results using the semi-empirical microscopic model show that o-BC₆N, t-BC₆N-1, and t-BC₆N-2 are potential superhard materials with Vickers hardness of 52.4, 45.3, and 40.1 GPa, respectively.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Diamond and cubic boron nitrogen (c-BN) are the hardest solids that have some kinds of significant properties, such as extreme hardness, high thermal conductivity, large elastic constants, bulk modules, wide band gaps, and superior melting temperatures [1–4]. However, diamond can react with ferrous alloys easily and oxidizes at approximate 600 °C in air [5]. Although c-BN is more chemically inactive and has a high oxidation resistant temperature $(\sim 1100 \circ C)$ [6], it is only half as hard as diamond. Thus, searching for potential superhard crystals is meaningful to compensate for the weakness between diamond and c-BN. Ternary boron-carbonnitrogen (B-C-N) compounds as potential candidates have received considerable attention in experimental [7-10] and theoretical [11–14] studies. Basing on the diamond structure, researchers have replaced C atoms with B and N atoms to obtain zinc-blendestructure ternary B-C-N phases. Particularly, diamond-like cubic BC₂N (c-BC₂N) phase, which are regarded as an ideal mixture of diamond and *c*-BN, has been investigated extensively [7,9,11,15–17].

cal vapor deposition at 1500-1800 °C. Seebeck coefficient test suggested that g-BC₆N is an n-type semiconductor, which was demonstrated by the consequence of soft X-ray emission spectra. Strictly speaking, cubic BC₆N (c-BC₆N) has not been compounded to date. Andrzej R. Badzian [18] obtained solid solutions of the sphalerite structural diamond and *c*-BN with the composition of (BN)_{0.26}C_{0.74} under high pressure and high temperature. The stoichiometric atomic ratio of the high dense (BN)_{0.26}C_{0.74} crystal is highly approximate to that of BC₆N. Luo at el. [13] constructed two possible metastable high density BC₆N phases originating from the diamond structure. According to their reports, the Vickers hardness of two BC₆N phases is about 79-80 GPa. These values are higher than that of the c-BC₂N [7] phases (76 GPa) but still lower than that of diamond. The calculated electronic band structures have proved that two BC₆N phases are both direct band gap semiconductors. Most of the formula BC_xN (x = 2, 4, 6) compounds are either insulators or semiconductors in which (BN) and C_x units are isoelectronic. Ternary B-C-N solids would become conductors when the quantity of B atoms is not equal to that of N atoms because B, C, and N atoms possess different valence electrons

Graphite-like BC₆N (g-BC₆N) [9] was synthesized using chemi-

ARTICLE INFO

Received 14 November 2017

Accepted 5 February 2018

First principles calculations

Available online 24 February 2018

Received in revised form 30 January 2018

Article history:

Keywords:

Metallicity

Superhard

BC₆N

(3, 4, and 5, respectively). A *P*-42 m structural electron-deficient metallic tetragonal (*t*-B₂CN) was studied theoretically [19].

Li et al. [20] recently discovered a novel hexagonal B_3N_5 (h- B_3N_5) structure constructed from the planar hexagonal BN layers sandwiched with N_2 molecules by using the particle swarm optimization technique. First-principle calculations indicated that h- B_3N_5 can transform into ambient metastable orthorhombic C222₁- B_3N_5 phase under high pressure. C222₁- B_3N_5 is a high energy density structure with a narrow band gap of 0.775 eV. The Vickers hardness of C222₁- B_3N_5 is about 44 GPa, making it a superhard material. In the previous work, we have reported a novel sp^2 - sp^3 mixed hybridized o-BC₂N [21] structure, which possesses fascinating electronic property of the linear–planar metallicity with Vickers hardness about 41.2 GPa, by replacing parts of the B and N atoms with C atoms in the C222₁- B_3N_5 unit cell.

In this paper, we report three possible BC₆N phases, including o-BC₆N, t-BC₆N-1, and t-BC₆N-2, by replacing parts of the B and N atoms with C atoms in the C222₁-B₃N₅ phase. The mechanical and electrical properties of the three crystals were predicted using first-principle calculations.

2. Calculation methods

By replacing part of B and N atoms with C atoms in the $o-B_3N_5$ unit cell, three BC₆N crystals with sandwich-like structure are constructed from multi-layers of C atoms sandwiched between the layers of B and N atoms along the *c* axis. In these structures, the sp^3 -hybridized B, C, and N atoms and sp^2 -hybridized C atoms coexist. After the structural parameters were geometry optimized, bulk modulus, shear modulus, total energies, and formation energies were calculated in detail using the pseudopotential density functional method [22] implemented in the CASTEP code [23–26].

The Perdew-Berke-Ernzerhof form of the generalized gradient approximation was used to treat the exchange-correlation function [27]. The norm-conserving pseudopotential [28] with energy of cutoff was 770 eV. The *k*-points were selected with $7 \times 7 \times 4$ in

the Brillouin zone at the mess space according to the Monkhorst-Pack scheme [29]. Using the CASTEP code, elastic constants, bulk modulus, and shear modulus can be calculated directly. Electronphonon coupling and phonon dispersion curves were studied within the frame of plane-wave pseudopotential method and density functional perturbation theory [30] implemented in the Quantum ESPRESSO package. The structural relaxation was processed by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods [31]. On the basis of our microscopic theoretical model [32–35] for covalent dominant crystals, the Vickers hardness can be calculated by the following formula: H_{ν} (GPa) = $AN_{\rho}^{2/3}d^{-2.5}\exp^{-1.191f_i-32.2f_m^{0.55}}$, where A is a constant as 350, N_e is the electron density, d is the average bond length, f_i is the Phillips ionicity of the chemical bond, and f_m is a factor of metallicity. f_i can be calculated by the equation: $f_i = [1 - \exp(-|P_c - P|/P)]^{0.735}$ [33]; f_m can be written as $f_m = 0.026D_F/n_e$ [34], where D_F is the electron density of states at the Fermi level and n_e is the total number of the valence electrons in a unit cell.

3. Results and discussions

After structural relaxation, the crystal structures of o-BC₆N, t-BC₆N-1, and t-BC₆N-2 are displayed in Fig. 1. Their corresponding atomic Wyckoff positions are listed in Table 1. The o-BC₆N and t-BC₆N-1 form sandwich-like layered structures, with one layer of B and N and multi-layers of C atoms along the c axis. The t-BC₆N-2 is constructed from the interlinked multi-layers of C sandwiched between blocks of B₂CN₂ along the c axis. The B₂CN₂ block is composed of two BN sheets and one carbon sheet. Three BC₆N structures contain sp^2 -hybridized C—C bonds and sp^3 -hybridized C—C, C—B, and C—N bonds. Sp^3 -hybridized B—N bonds present in o-BC₆N and t-BC₆N-1 and they are not found in t-BC₆N-2 structure.

The lattice parameters, total energies E_t , formation energies E_f , and bulk modulus *B* of the three BC₆N structures are listed in Table 2. We calculated the lattice parameters of diamond and

Fig. 1. The relaxed crystal structures of *o*-BC₆N (a), *t*-BC₆N-1(b), and *t*-BC₆N-1(c). The boron, carbon, and nitrogen atoms are described as pink, black, and blue colors, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Atomic Wyckoff positions of the o-BC ₆ N, t-BC ₆ N-1, and t-BC ₆ N-2 structures.

o-BC ₆ N		t-BC ₆ N-1		$t-BC_6N-2$		
Atom	Wyckoff positions	Atom	Wyckoff positions	Atom	Wyckoff positions	
В	2a (0.5, 0.5, 0.691)	В	2e (0, 0, 0.807)	B ₁	2 g (-0.5, 0, -0.308)	
Ν	2b (0, 0.5, 0.252)	Ν	2 g (0, 0.5, 0.254)	B ₂	2e(0, 0, -0.808)	
C ₁	2b (0.5, 0, 0.051)	C ₁	1a(0, 0, 0)	N ₁	2g(-0.5, 0.5, -0.690)	
C ₂	2b (0.5, 0, 0.137)	C ₂	2 g (0.5, 0, 0.052)	N ₂	2f(-0.5, -0.5, -0.809)	
C ₃	2a (0.5, 0.5, 0.311)	C ₃	2 g (0.5, 0, 0.139)	C ₁	1 <i>a</i> (0, 0, 0)	
C ₄	2a (0.5, 0.5, 0.498)	C_4	2f(0.5, 0.5, 0.313)	C_2	1c(-0.5, -0.5, 0)	
C ₅	2b (0.5, 0, 0.861)	C ₅	1c (0.5, 0.5, 0.5)	C ₃	4 h (-0.248, -0.262, -0.052)	
C ₆	2b (0.5, 0, 0.946)	C ₆	2 g (0, 0.5, 0.551)	C_4	4 h (-0.266, -0.244, -0.138)	
		C ₇	2 g (0, 0.5, 0.637)	C ₅	4 h (-0.249, 0.225, -0.250)	
				C ₆	2 g (-0.5, 0, -0.497)	
				C ₇	4 h (-0.259, 0.244, -0.552)	
				C ₈	4 h (-0.248, -0.234, -0.638)	

Table 2

Lattice parameters, total energy (E_t), formation energy (E_t), bulk modulus B, and elastic stiffness constants of the o-BC₆N, t-BC₆N-1, and t-BC₆N-2 structures after structural optimization. As a comparison, the corresponding values for BC₆N-1 and r-BC₆N are also listed.

Structure Symmetry	o-BC ₆ N-1 Imm2	<i>t</i> -BC ₆ N-1 <i>P</i> -4 <i>m</i> 2	<i>t</i> -BC ₆ N-2 <i>P</i> -4	BC ₆ N-1 ^a P-42M	<i>r</i> -BC ₆ N ^b R3M
a (Å)	2.628	2.587	3.692	3.560	3.565
b (Å)	2.569	2.587	3.692	3.572	3.565
c (Å)	15.804	15.784	15.654	3.572	3.565
$\alpha \beta \gamma$ (deg)	90	90	90	90	90.15
E_t (eV/atom)	-159.09	-159.44	-159.27	-160.04	-160.58
E _f (eV/atom)	0.946	0.591	0.766	0.441	0.331
B (GPa)	313.4	317.8	293.3	412.7	399.9
G (GPa)	177.6	149.1	183.3		
<i>c</i> ₁₁	724.7	645.9	464.9		977.0
c ₂₂	661.8				
C ₃₃	986.2	1001.5	957.1		986.1
C ₄₄	81.4	68.16	122.5	525.4	529.1
C ₅₅	130.9				
C ₆₆	121.4	123.8	291.9		433.6
c ₁₂	37.7	96.0	235.5		109.8
C ₁₃	75.9	108.4	83.1		109.8
C ₂₃	139.6				

^a Ref. [38].

c-BN of 3.568 and 3.627 Å, respectively, which are close to the experimental values of 3.567 Å for diamond and 3.615 Å for c-BN [8]. These results indicate that the calculated results are satisfactory. For o-BC₆N, the lattice constants *a*, *b*, and *c* are 2.628, 2.569, and 15.804 Å, respectively. For *t*-BC₆N-1, the relaxed structural parameter is a = b = 2.587 Å; this value is between the lattice parameter a and b of the o-BC₆N phase. For t-BC₆N-2, the relaxed structural parameter is a = b = 3.629 Å, which is much bigger than the lattice parameters *a* or *b* of the o-BC₆N and *t*-BC₆N-1 phases. The lattice constants c of t-BC₆N-1 and t-BC₆N-2 are 15.784 and 15.654 Å, which are much closer to the lattice c of the o-BC₆N phase. The *t*-BC₆N-1 structure has the lowest total energy (E_t) than the two other BC6N structures. This result is consistent with the bond counting rule [36,37]. The formation energy (E_f) of the BC₆N phase is calculated using the following formula: $E_f = E_{BC_6N} - (E_{c-BN} + 6E_C)$, where E_{BC_6N} , E_{c-BN} , and E_c represent the energy of BC₆N, *c*-BN, and diamond formula unit, respectively. All the phases have positive formation energies, this result indicates that these BC₆N phases are metastable and tend to separate into c-BN and diamond, which is similar to the BC₂N [11] and BC₆N [13]. The calculated bulk modulus B of o-BC₆N, t-BC₆N-1, and t-BC₆N-2 are 313.4, 317.8, and 293.3 GPa, respectively. These values are smaller than that of diamond (443 GPa) and *c*-BN (400 GPa) [22].

To check the mechanical stabilities of the BC₆N crystals, we calculated their elastic stiffness constants. For the orthorhombic structures, the generalized elastic stability criteria are $C_{11} > 0$, C₂₂ > 0, C₃₃ > 0, C₄₄ > 0, C₅₅ > 0, C₆₆ > 0, [C₁₁ + C₂₂ + C₃₃ + 2 (C₁₂ + C₁₃ + C₂₃)] > 0, (C₁₁ + C₂₂ - 2C₁₂) > 0, (C₁₁ + C₃₃ - 2C₁₃) > 0, and (C₂₂ + C₃₃ - 2 C₂₃) > 0 [39]. For the tetragonal structures, the restrictions are C_{ii} > 0 (*i* = 1, 3, 4, 6), (C₁₁ - C₁₂) > 0, (C₁₁ + C₃₃ - 2 C₁₃) > 0, and [2 (C₁₁ + C₁₂) + C₃₃ + 4C₁₃] > 0 [39]. The elastic stiffness constant c_{ij} values are listed in Table 2. The results showed that all three BC₆N crystals satisfy the corresponding restrictions mentioned above, suggesting that they are mechanically stable. To explore the dynamical stability, we calculated the phonon dispersion curves of *o*-BC₆N, *t*-BC₆N-1, and *t*-BC₆N-2, respectively. The computed results are shown in Fig. 2. At ambient conditions, three structures are dynamically stable because of the absence of the imaginary frequencies in the whole Brillouin zone.

The electronic band structures at the equilibrium geometries were studied, and the results are presented in Fig. 3. The calculated results in the o-BC₆N structure show the presence of three occupied bands crossing the Fermi level (the red bands in Fig. 3a); this result suggests that the o-BC₆N phase may display metallicity property. Similarly, several occupied bands cross the Fermi level (the red bands in Fig. 3b and c, respectively) in t-BC₆N-1 and t-BC₆N-2. These results indicate that the t-BC₆N-1 and t-BC₆N-2 crystals may also possess the property of metallicity. To identify which atoms would contribute at the Fermi level and bring about the structural conductivity, we calculated the total density of states (DOS) and partial density of states (PDOS) for B, C, and N atoms in the unit cell of o-BC₆N, t-BC₆N-1 and t-BC₆N-2,

^b Ref. [13].

Fig. 3. The electronic structures of o-BC₆N (a), t-BC₆N-1 (b), and t-BC₆N-2 (c). The Fermi level is indicated by the horizontal dashed line.

Fig. 4. Total density of states, s (blue line) and p (red line) partial density of states of the o-BC₆N (a), t-BC₆N-1 (b), and t-BC₆N-2 (c) structures. The Fermi level is indicated by green dashed line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

respectively. The calculated DOS and PDOS of the B, N and C_i ($i = 1 \sim 6$) atoms in the o-BC₆N structure are shown in Fig. 4a. At the Fermi level, the conducting electrons were mostly from the p electrons of sp^2 -hybridized C₂, C₃, C₅, and C₆ atoms. The calculated total DOS and the PDOS of the B, N, and C_j ($j = 1 \sim 7$) atoms in the t-BC₆N-1 structure are shown in Fig. 4b. The conducting electrons at the Fermi level were mostly from the p electrons of sp^2 -hybridized C₂, C₃, C₅, and C₆ atoms. The calculated DOS and PDOS of the B₁, N₁, and C_k ($k = 1 \sim 8$) atoms in the t-BC₆N-2 structure are shown in Fig. 4c. The conducting electrons at the Fermi level were mostly from the p electrons of sp^2 -hybridized C₃, C₄, C₆, and C₇ atoms. Consequently, the metallicity of three BC₆N came from the sp^2 -hybridized C atoms. The sp^3 -hybridized atoms play a major role in blocking electronic conduction.

In the *t*-BC₆N-1 structure, if the partial structure (the green square in Fig. 1b) below C₇ atom is rotated 90 degree around the *c* axis, the two parts of constitution (the red and green squares in Fig. 1b) above and below the C₇ atomic layer will become mirror symmetry. We can also obtain a mirror symmetry structure in the *t*-BC₆N-2 structures by spinning the partial structures below the C₈ layer in *t*-BC₆N-2 to 90 degree around the *c* axis. This dramatic structural symmetry may lead to the orthogonal conduction electron migration ways in above the BC₆N structures. To understand the directional movements of the excited electrons in the *o*-BC₆N structure under varying electric fields, we calculated the electron orbits around the Fermi level (red bands in Fig. 3) as shown in Fig. 5.

In Fig. 5a and b, the possible conduction electron orbits in the o-BC₆N partially overlap on the [1 0 0] and [0 1 0] crystal orientations along the C₂—C₃ (A region) and C₅—C₆ (B region) diatoms chains, respectively. In the C and D regions, the overlap of the electron orbits enveloping the C₅—C₆ and C₂—C₃ diatomic units shows an orthogonal relationship with that in the B and A regions. These overlapped electric orbits are disconnected in the [0 0 1] crystal orientation. The distribution of the electron orbits around the Fermi level indicates that a novel layer one-dimensional (1D) electric conductivity with orthogonal relationship between the neighboring layers is present in the *o*-BC₆N crystal.

Based on the same method, we also found the 1D metallicity with the orthogonal directionality between the alternant atomic layers in the *t*-BC₆N-1 and *t*-BC₆N-2 structures shown as in Fig. 5 (c)–(f). In the t-BC₆N structures, this orthogonal 1D conductivity is consistent with their unique crystal symmetry. If the crystal with the orthogonal distribution of 1D electric conductivity is placed in a changing magnetic or electric field, we will find that their 1D conductivity will change regularly with the direction or intensity of the field. Thus, this phenomenon implies that the single crystals of o-BC₆N, t-BC₆N-1, and t-BC₆N-2 may be suitable candidate materials to be used as probe in the field strength or direction measuring. In addition, considering the metallicity of the three proposed BC₆N structures, using our hardness model, and considering the metallicity of the three proposed BC₆N structures, we estimated the Vickers hardness values of o-BC₆N, t-BC₆N-1, and t-BC₆N-2. Their bond parameters obtained from first-principle calculations

Fig. 5. Calculated electron orbits of *o*-BC₆N, *t*-BC₆N-1, and *t*-BC₆N-2 structures. Every electron orbit figure includes two electron orbit projections of electron orbit: the left projections are along the [0 1 0] direction in the *o*-BC₆N and *t*-BC₆N-1 structures and along the [1 1 0] direction in the *t*-BC₆N-2 structure; on the other hand, the right projections are corresponding projections in four regions, marked as A, B, C, and D in the left figures, along the [0 0 1] direction in the *o*-BC₆N, *t*-BC₆N-1, and *t*-BC₆N-2 structures, respectively.

Table 3

Chemical bond parameters and Vickers hardness of o-BC₆N.

Bond type	d	Рор	Pc	N _e	f_{i}	$f_{\rm m}~(10^{-3})$	H_v
C1C2	1.522	0.87	0.87	0.628	0	0.779	52.4
C2-C3	1.344	1.44	1.47	1.042	0.057	1.136	
C3–C4	1.505	0.94	0.90	0.650	0.096	0.645	
C5–C6	1.359	1.44	1.47	1.009	0.057	1.486	
C6–C7	1.550	0.85	0.87	0.595	0.063	2.035	
C4N1	1.607	0.62	0.80	0.515	0.363	0.363	
N1-B1	1.604	0.65	0.80	0.460	0.313	0.409	
C5—B1	1.555	0.93	0.90	0.526	0.079	2.868	

Table 4

Chemical bond parameters and Vickers hardness of t-BC₆N-1.

Bond type	d	Рор	P _c	Ne	$f_{\rm i}$	$f_{\rm m} (10^{-3})$	H_{v}
C1-C2	1.538	0.87	0.87	0.609	0	0.280	45.3
C2-C3	1.362	1.43	1.47	1.003	0.071	0.483	
C4—C5	1.514	0.94	0.90	0.639	0.096	0.853	
C5-C6	1.347	1.43	1.47	1.037	0.071	1.360	
C6–C7	1.529	0.86	0.87	0.620	0.037	0.807	
B4—N1	1.612	0.64	0.80	0.454	0.329	0.612	
N1-C4	1.595	0.63	1.21	0.526	0.688	0.401	
C3—B1	1.548	0.93	0.90	0.079	0.079	3.389	

Table 5

Chemical bond parameters and Vickers hardness of t-BC₆N-2.

Bond type	d	Рор	P _c	Ne	f_{i}	$f_{\rm m} (10^{-3})$	H_{v}
C1-C3	1.56982	0.84	0.85	0.573	0.038	0.323	40.1
C2-C3	1.52057	0.83	0.85	0.631	0.064	0.323	
C3-C4	1.34099	1.47	1.45	1.051	0.042	0.552	
C6–C7	1.33848	1.48	1.45	1.057	0.038	0.342	
С7—С8	1.5593	0.84	0.85	0.585	0.038	0.342	
C4—B1	1.57622	0.89	0.88	0.505	0.036	0.360	
C5-B1	1.60589	0.81	0.78	0.401	0.087	1.493	
C5—B2	1.60941	0.81	0.78	0.399	0.087	1.501	
C6—B2	1.58114	0.89	0.88	0.501	0.036	0.370	
C4N1	1.51975	0.69	0.88	0.699	0.351	0.288	
C5-N1	1.58892	0.6	0.78	0.553	0.370	1.149	
C5-N2	1.58451	0.61	0.78	0.537	0.353	0.134	
C6—N2	1.51423	0.69	0.88	0.707	0.351	0.295	

are shown in Table 3–5, respectively. In this study we obtained the pure covalent population Pc by calculating the overlap population of the C—C bonds in $2 \times 2 \times 1$ supercells based on the corresponding BC₆N structures. The calculated Vickers hardness of o-BC₆N, t-BC₆N-1, and t-BC₆N-2 are 52.4, 45.3, and 40.1 GPa, respectively, which indicates that they are the potential superhard materials.

4. Conclusions

In this work, three novel sp^2-sp^3 hybridized BC₆N phases are predicted and investigated in detail using first-principle calculations. These sandwich-like structural BC₆N are similarly constructed from interlinked C multi-layers blocks stacking with one BN block along the *c* axis. The structural stabilities of these phases have been confirmed using the calculations of elastic stiffness constants and phonon spectra. The band structures show that these phases may process a metallic character. The calculated results of DOS and PDOS suggest that the main contributions to the metallicity in the three structures come from the p orbits of sp^2 -bonded C atoms. Sp³-hybridized B, C, and N atoms form the isolation strips with a role in blocking electronic conduction. In the o-BC₆N and *t*-BC₆N-1 structures, the electrons can transmit along the chains, consisting of parallel C_2 – C_3 and C_5 – C_6 diatomic units at the [100] or the [010] crystal directions in different layers. In the t-BC₆N-2 structure, the electrons in different layers can transmit along the parallel, distributing C_3-C_4 and C_6-C_7 diatomic chains at the [$\overline{1}$ 1 0] crystal orientations and [1 1 0] crystal orientations. These results indicate that o-BC₆N, t-BC₆N-1 and t-BC₆N-2 crystals possess an interesting 1D metallicity with the orthogonal directionality between the alternant atomic layers. Thus, these materials can be used for measuring field strength and direction. The calculated theoretical Vickers hardness of o-BC₆N, t-BC₆N-1 and t-BC₆N-2 are 52.4, 45.3, and 40.1 GPa, respectively, which indicate the potential use as superhard conductive materials.

Acknowledgements

This work was supported by the National Science Foundation of China (Grants Nos. 51421091, 51332005, 51572235, and 51672238).

References

- N.V. Novikov, Synthesis of superhard materials, J. Mater. Process. Technol. 161 (1-2) (2005) 169–172.
- [2] N. Dubrovinskaia et al., Aggregated diamond nanorods, the densest and least compressible form of carbon, Appl. Phys. Lett. 87 (8) (2005) 083106.
- [3] N. Dubrovinskaia et al., Superior wear resistance of aggregated diamond nanorods, Nano Lett. 6 (4) (2006) 824–826.
- [4] I. Caretti et al., Friction and wear of amorphous BC₄N coatings under different atmospheres, Diam. Relat. Mater. 16 (4–7) (2007) 1445–1449.

- [5] L. Vel et al., Cubic boron nitride: synthesis, physicochemical properties and applications, Mater. Sci. Eng. B 10 (2) (1991) 149–164.
- [6] B.P. Singh, Characterization of cubic boron nitride compacts, Mater. Res. Bull. 21 (1) (1986) 85–92.
- [7] V.L. Solozhenko et al., Synthesis of superhard cubic BC₂N, Appl. Phys. Lett. 78 (10) (2001) 1385–1387.
- [8] E. Knittle et al., High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions, Phys. Rev. B 51 (18) (1995) 12149–12156.
- [9] Kawaguchi et al., Preparation and electronic state of graphite-like layered material BC₆N, Synth. Met. 125 (2) (2001) 259–263.
- [10] X. Luo et al., Refined crystal structure and mechanical properties of superhard BC4N crystal: first-principles calculations, J. Phys. Chem. C 112 (25) (2008) 9516–9519.
- [11] H. Sun et al., Structural forms of cubic BC₂N, Phys. Rev. B 64 (9) (2001) 094108.
- [12] X. Luo et al., First-principles study of wurtzite BC₂N, Phys. Rev. B 76 (9) (2007) 092107.
- [13] X. Luo et al., Ground-state properties and hardness of high density BC₆N phases originating from diamond structure, J. Appl. Phys. 101 (8) (2007) 083505.
- [14] X. Luo et al., Prediction of graphitelike BC₄N from first-principles calculations, J. Appl. Phys. 105 (4) (2009) 043509.
 [15] M. Mattesini, S.F. Matar, Search for ultra-hard materials: theoretical
- [15] M. Mattesini, S.F. Matar, Search for ultra-hard materials: theoretical characterisation of novel orthorhombic BC₂N crystals, Int. J. Inorg. Mater. 3 (7) (2001) 943–957.
- [16] Y. Zhang et al., Superhard cubic BC₂N compared to diamond, Phys. Rev. Lett. 93 (19) (2004) 195504.
- [17] Q. Hu et al., Thermal oxidation behavior of hexagonal BC₂N, Mater. Charact. 60 (1) (2009) 56–59.
- [18] A.R. Badzian, Cubic boron nitride diamond mixed crystals, Mater. Res. Bull. 16 (11) (1981) 1385–1393.
- [19] J.L. He et al., First-principles study of B₂CN crystals deduced from the diamond structure, J. Phys.: Condens. Matter 16 (46) (2004) 8131–8138.
- [20] Y. Li et al., High-energy density and superhard nitrogen-rich B-N compounds, Phys. Rev. Lett. 115 (10) (2015) 105502.
- [21] Y. Gao et al., Superhard sp²-sp³ hybridized BC₂N: a 3D crystal with 1D and 2D alternate metallicity, J. Appl. Phys. 121 (22) (2017) 225103.

- [22] M.D. Segall et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (11) (2002) 2717–2744.
- [23] Y. Wang et al., CALYPSO: a method for crystal structure prediction, Comput. Phys. Commun. 183 (10) (2012) 2063–2070.
- [24] J. Lv et al., Predicted novel high-pressure phases of lithium, Phys. Rev. Lett. 106 (1) (2011) 015503.
- [25] Y. Wang et al., Crystal structure prediction via particle swarm optimization, Physics 82 (9) (2010) 7174-7182.
- [26] L. Zhu et al., Reactions of xenon with iron and nickel are predicted in the Earth's inner core, Sci. Found. China 6 (7) (2014) 644–648.
- [27] J.P. Perdew et al., Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.
- [28] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B: Condens. Matter 41 (11) (1990) 7892.
- [29] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188–5192.
- [30] S. Baroni et al., Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (18) (1987) 1861.
- [31] Fischer et al., General methods for geometry and wave function optimization, J. Phys. Chem. 96 (24) (1992) 9768–9774.
- [32] F. Gao et al., Hardness of covalent crystals, Phys. Rev. Lett. 91 (1) (2003) 015502.
- [33] J. He et al., Ionicities of boron-boron bonds in B(12) icosahedra, Phys. Rev. Lett. 94 (1) (2005) 015504.
- [34] X. Guo et al., Hardness of covalent compounds: roles of metallic component and d valence electrons, J. Appl. Phys. 104 (2) (2008) 023503.
- [35] M. Ma et al., A metallic superhard boron carbide: first-principles calculations, PCCP 17 (15) (2015) 9748–9751.
- [36] M. Mattesini et al., First-principles characterisation of new ternary heterodiamond BC₂N phases, Comput. Mater. Sci. 20 (1) (2001) 107–119.
- [37] Y. Tateyama et al., Proposed synthesis path for heterodiamond BC₂N, Phys. Rev. B 55 (55) (1997) 10161–10164.
- [38] Y. Zhang et al., Influence of carbon content on the strength of cubicBCxN: a first-principles study, Phys. Rev. B 77 (9) (2008) 094120.
- [39] J.P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50 (10) (1979) 6290-6295.