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We performed ab initio molecular dynamics simulations of the C2c and Cmca-12 phases of hydrogen at
pressures from 210 to 350 GPa. These phases were predicted to be stable at 0 K and pressures above
200 GPa. However, systematic studies of temperature impact on properties of these phases have not been
performed so far. Filling this gap, we observed that on temperature increase diffusion sets in the Cmca-12
phase, being absent in C2c. We explored the mechanism of diffusion and computed melting curve of
hydrogen at extreme pressures. The results suggest that the recent experiments claiming conductive
hydrogen at the pressure around 260 GPa and ambient temperature might be explained by the diffusion.
The diffusion might also be the reason for the difference in Raman spectra obtained in recent experiments.

B
eing the lightest and the most abundant element in the universe, hydrogen is a fascinating substance. The
metallization of dense hydrogen has been one of the central topics since the first theoretical prediction of
transition to a monatomic metallic state of molecular hydrogen at 25 GPa by Wigner and Huntington in

19351. Since then a series of theoretical and experimental studies have been employed but could not completely
unveil the structural and electronic properties of hydrogen at high pressures2. Solid hydrogen remains an
electrical insulator3,4 up to the pressure of 342 GPa at temperatures below 100 K. In Ref. 3, hydrogen was observed
as a non-metallic up to 320 GPa at 77 K. Metallic monatomic hydrogen has been predicted5 to exist in the liquid
phase at high temperature and pressure. It has been reported that the hydrogen remains molecular up to 285 GPa
at T,140 K6,7. Pickard and Needs8 presented the zero temperature phase diagram of solid hydrogen up to
<400 GPa, predicting the most stable phases remained to be insulating up to 400 GPa.

Recently9 the metallization of hydrogen at ambient temperature and pressures in the range 260–270 GPa was
reported, suggesting the further detailed and comprehensive studies of this element. Other studies suggested that
hydrogen remain insulating10 at the very same conditions and suggested11 that the experimental data was con-
taminated due to certain shortcomings of the experimental technique. In such situation theory becomes a useful
tool allowing to look at the phenomena possibly causing the disagreement between these observations.

To the best of our knowledge, the x-ray determination of the high pressure structures of solid hydrogen could
not be performed by the experiments due to the extremely weak x-ray scattering of hydrogen. Only the experi-
mental findings through Raman and visible transmission spectroscopy10 are available in the literature. Also, there
is a number of theoretical papers that render other phases stable at high-PT12–16. The main purpose of the present
work, however, is to study the impact of temperature on the structures predicted to be stable at relevant P and zero
temperature. Therefore, we have chosen to investigate the C2c and Cmca-12 phases, relevant to the range of
pressures in recent experiments. These phases were found stable above 200 GPa by Pickard and Needs8. Since the
impact of temperature is expected to be critical (no metallization according to Loubeyre et al.3 at 77 K and
metallization according to Eremets and Troyan9 at 300 K), we employed molecular dynamics (MD) method that
allows to account for temperature impact.

Results
We found that the impact of temperature is critical. Hydrogen atoms abruptly become diffusing before melting on
temperature increase. Intramolecular bonding becomes rather weak at high pressure17 that explains easy pairing-
depairing process18. This might explain the difference between the Loubeyre et al.3 and Eremets and Troyan9

experiments. The apparent contradiction between the metallization and no-metallization experiments could be
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explained by the evacuation of the hydrogen from the experimental
cell in experiments by Eremets and Troyan9 due to a sudden onset of
diffusion on the C2c to Cmca-12 transition.

We note that Howie et al.10 did not measure conductivity therefore
there is no direct controversy between their and Eremets and Troyan9

experiments. While the claim for metallic hydrogen might be unjus-
tified as argued in Ref. 11, we demonstrate that there is the mech-
anism that might lead to the drop in resistance at ambient
temperature and high pressure. Also, the drop in resistance might
be anisotropic.

Hydrogen melts at a much higher temperatures than the ambient
temperature in the Eremets and Troyan experiment. The hydrogen
melting curve bends down but not fast enough to become liquid at
260 GPa. Our hydrogen melting points at 652 K and 261 GPa and
567 K and 288 GPa are in good agreement with the melting curve
depicted in Fig. 1 of Ref. 10 and the melting point very recently
calculated by Liu et al.13. The diffusive state might be an intermediate
between the Cmca-12 and the Ibam structure10 and/or Cmca-4 struc-
ture13. It is possible that these structures have actually formed in our
MD simulations (Fig. 2).

Discussion
We performed MD simulations (see Methods) for the constant
volume starting with the C2c and Cmca-12 (12 atoms in a primitive
unit cell) structures. The cell parameters were obtained from relaxa-
tion calculations at pressures of 210 GPa, 260 GPa, 305 GPa and
350 GPa, respectively. Then for a number of temperatures we per-
formed MD runs. For each isochore melting point was computed by
the Z method19. The computed 4 points are shown in Fig. 1 along
with the Z-shaped isochores. Pressure drops on melting, indicating
negative volume of melting in accordance with previous studies. Our
melting curve, computed at 200 ,P,350 GPa, compares well with
available data in literature. In Fig. 1, we have shown our P-T com-
puted points, where the sharp P changes at 852 K, 652 K, 567 K and
482 K, for C2c and Cmca-12 phases, representing the melting transi-
tions at these temperatures.

Fig. 3 shows mean square displacement for these phases at a
number of temperatures as a function of time. In Fig. 3a, we could
not see any diffusion for C2c phase and the melting transition occurs
at T 5 852 K, whereas in Fig. 3b, the significant diffusion can be
observed at T 5 490 K for Cmca-12 phase. Note that at T . 490 K,
the simulated solid state is metastable, because the hydrogen melts at
652 K (see Fig. 3b). The same trend can also be seen for Cmca-12
phases at 305 GPa and 350 GPa (Fig. 3c and 3d respectively, where
the diffusion can be seen at T 5 501 K and T 5 429 K respectively
and the melting occurs at T 5 567 K and T 5 482 K respectively).

Conductive hydrogen was claimed to be observed at 260 GPa. Let
us take a closer look at the data for this pressure.

Calculated radial distribution functions for Cmca-12 structure at
260 GPa, at a number of temperatures are shown in Fig. 4 and Fig. 5.
One can see that the distance between the central hydrogen atom and
the atoms in the first neighbour shell is very short (<1.2 Å). This
suggests that at elevated temperature the atoms that belong to dif-
ferent molecules might come closer to each other than to the atoms in
their ’native’ molecule. That might lead to exchange of the atoms and,
thus, to hydrogen diffusion in solid molecular hydrogen. Indeed, on
the T increase we observe that the first (molecular) peak of RDF and
the second (1st neighbour) peak start overlap (Fig. 4). When the
diffusion sets in, the RDF becomes considerable (non-zero) at the
distances intermediate between the intramolecular peak at 0.72 Å
and intermolecular peak at 1.2 Å (it forms a shoulder rather than a
peak at high T; it can be seen as a peak at low T (Fig. 5). This overlap
becomes pronounced at temperatures between 400 K and 500 K. We
closely monitored the mobility of hydrogen atoms and we observed
that at around 490 K the hydrogen atoms depair18 and create new
pairs, facilitating, in this way, diffusion of H atoms. Fig. 3b shows
mean square displacement for Cmca-12 phase at 260 GPa, at a num-
ber of temperatures as a function of time.

Clearly, there is no diffusion below 490 K. One can see that at all
temperatures before onset of melting the hydrogen preserves a
layered structure (Fig. 2). The melting was computed by the Z
method19 that was recently demonstrated to perform well for
molecular crystals20. The melting occurs at 652 K (see inset in
Fig. 4) with negative volume change. This suggests that the melting
curve of hydrogen has a maximum proposed earlier, however the
temperature is still high enough to rule out the Eremets and Troyan9

explanation of metallization by melting transition. The layered struc-
ture of hydrogen suggests that diffusion proceeds through layers.
Fig. 2 shows the trajectories of hydrogen atoms in the central layer.
We see (Fig. 2) that there is no diffusion up to about 490 K. The
atoms are moving with considerable amplitude, yet they stay bonded
with the same atom through the whole simulation time. At about
490 K the picture is completely different. The continuous bands or,
rather, diffusion channels are formed. The diffusion clearly stays
within layers. There is no diffusion along 100 and 010 even at much
higher temperature of 657 K.

Thus we observe a temperature induced transition from non-dif-
fusive to the diffusive state in solid molecular hydrogen. In our MD
simulations we could not consider zero point motion (ZPM) that is
considerable at these pressures. Indeed, the vibron frequency of
4000 cm21 implies the amplitude of ZPM is equal to 0.16 Å. This
is equivalent to the amplitude of thermal motion of 200 K (Fig. 4).
Therefore, the cumulative impact of thermal and zero point motion
might cause the diffusion at already 300 K.

Note, that for deuterium to become diffusive the temperature
needs to be higher than for hydrogen. First, the ZPM amplitude
for D is smaller (0.1 Å). Second, the amplitude of thermal motion
is also smaller at the same temperature. Therefore, exchange of D
atoms might require temperatures of 400 K and higher, unlike for H
where 300 K seem to be sufficient.

We analyzed the charge that diffusing H atom can carry (Fig. 6).
By performing Bader analysis21,22, we computed charges on H atoms

Figure 1 | Melting curve of hydrogen. The circles represent the melting P-

T points computed in this study by the Z method19 (recently confirmed for

molecular systems20). The sharp P changes at 852 K, 652 K, 567 K and

482 K, for C2c at 210 GPa, Cmca-12 at 260 GPa, Cmca-12 at 305 GPa, and

Cmca-12 at 350 GPa respectively. The inverted triangles are experimental

points from Diatschenko et al. (Ref. 28), right triangles and pluses are

experimental points from Datchi et al. (Ref. 29), the stars are experimental

points from Gregoryanz et al. (Ref. 30), the crosses are experimental points

from Deemyad et al. (Ref. 31), left triangles are experimental points from

Eremets et al. (Ref. 32), the diamonds are ab initio data from Bonev et al.

(Ref. 5), and the square is the very recently calculated melting point of

hydrogen by Liu et al. (Ref. 13).
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Figure 2 | Trajectories of atoms for Cmca-12 at 260 GPa. The left panels show XY (along Z) projections of all 216 atoms computed at the last 4000

timesteps of MD runs at the temperatures (from top to bottom) 292, 490, 657, and 652 K. All runs show layered structure of hydrogen except the last one

which is a liquid structure. The right panels show the XZ projections of the central (the longest) layer in the computational cell for the run on the left. At T

5 292 K there is no diffusion, all atomic positions during the run are confined to the close neighborhood of the original crystallographic positions. At

T 5 490 K one can see formation of connected patterns indicating the ionic diffusion of hydrogens. At T 5 657 K this formation is fully developed in the

computational cell. At T 5 652 K in the liquid state the lattice is gone and the atoms homogeneously fill the cell.

Figure 3 | Hydrogen diffusion. Mean square displacement (MSD) ,(r(t)2r(0))2., where r(t) is the radius vector of the system at the time moment t, is

shown for: (a) C2c at 210 GPa: There is no diffusion – the MSD is constant corresponding to quickly reached equilibrium state with the thermal

movement around the equilibrium lattice positions up to T , 852 K. At melting temperature 852 K (Fig. 1) the diffusion starts in liquid. (b) Cmca-12 at

260 GPa: computed for the same temperatures as in Fig. 3a and shown by the same colors. At low T there is no diffusion – the MSD is constant

corresponding to quickly reached equilibrium state with thermal motion around the equilibrium lattice positions. At T 5 490 K the state is different

because the diffusion sets in. On the temperature increase, diffusion increases. Diffusion in liquid (T 5 652 K) is about order of magnitude larger than

diffusion in solid at about the same (T 5 657 K) temperature. However, this is a very large diffusion for a solid. The MSD is weakly dependent on T as soon

as the diffusion starts in the solid state (490 K , T , 657 K). (c) Cmca-12 at 305 GPa: At low T there is no diffusion – the MSD is constant corresponding

to quickly reached equilibrium state with thermal movement around the equilibrium lattice positions. At T 5 501 K the state is different because the

diffusion sets in. Diffusion increases with temperature. Diffusion in liquid (T 5 567 K) is about order of magnitude larger than diffusion in solid at about

the same (T 5 585 K) temperature. The MSD just slightly dependent on T as soon as the diffusion starts in the solid state (501 K , T , 585 K). (d) Cmca-

12 at 350 GPa: At low T there is no diffusion – the MSD is constant corresponding to quickly reached equilibrium state with thermal movement around

the equilibrium lattice positions. At T 5 429 K the state is different because the diffusion sets in. Diffusion increases with temperature. Diffusion in liquid

(T 5 482 K) is about order of magnitude larger than diffusion in solid at about the same (T 5 473 K) temperature. The MSD just slightly dependent on T

as soon as the diffusion starts in the solid state (429 K , T , 473 K).
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at a number of temperatures (Fig. 6). One can see that below the
diffusion threshold the charge is close to 1 e., interesting that the
charge distribution is asymmetric as predicted by Baranowski23. The
charge distribution becomes much wider in diffusing state and sim-
ilar to the distribution in the liquid state. Considering that the liquid
monatomic state is metallic it is possible that the diffusing state is also

conductive. Also, considering that in these experiments hydrogen
might recrystallize and that the diffusion proceeds along the 001
direction, different experiments might lead to different observations
due to the different grains orientation. The bandgap in our simula-
tions is closing but it is known that DFT normally underestimates
bandgaps24,25.

If we extrapolate our melting curve (Fig. 1), we find the melting
points at around 460 GPa at T 5 300 K and 540 GPa at T 5 0 K.
Given that the liquid hydrogen is non-molecular and metallic, this
provides us with the upper limit for the onset of metallicity in hydro-
gen. This is, of course, if other solid-solid transitions will not signifi-
cantly increase the hydrogen melting temperature.

Methods
We have performed our ab initio molecular dynamics (MD) calculations with the use
of Projector Augmented Wave (PAW) method26, as implemented in the Vienna Ab
initio Simulation Package (VASP) code24,25. The Perdew, Burke, and Ernzerhof
(PBE)27 variant of the generalized gradient approximation (GGA) was used for the
exchange correlation functional. The Gaussian smearing method with a 0.05 eV
smearing width was used for the Brillouin zone integration. We have employed 3 3 3
3 2 k-points mesh to sample the Brillouin zone. The energy cutoff was equal to
520 eV. These values were found sufficient to produce converging results. The Verlet
algorithm is used to integrate the equation of motion, with a time step of 0.25 fs (1 fs
5 10215 s). The duration of each MD run was 10000 time steps. Calculation of
intermediate averages showed that this is enough to obtain converging averages (see
Fig. 1 and inset in Fig. 4). The initial configuration in every run was fully optimized for
C2c and Cmca-12 structures8 with 216 hydrogen atoms. We have performed a series
of simulations in the microcanonical ensemble, with a constant volumes, like 1.5408
Å3/atom (P 5 259 GPa at T 5 0 K) for one of the studied Cmca-12 structure at
260 GPa, varying initial temperatures19. From these simulations, the corresponding
melting curve of hydrogen, mean square displacements (MSD’s), radial distribution
functions (RDF’s), trajectories, pressures and temperatures were derived and analyzed.
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at the density 1.54083 Å3/atom and T 5 92 K. Corresponding pressure (P)

at T 5 0 K is equal 259 GPa. The intermolecular peak at 1.2 Å is
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Center (NSC) in Linköping. The study was supported by the Swedish Research Council
(VR). M.R. acknowledges support from Higher Education Commission (HEC) of Pakistan.
H.K. Mao was supported as part of EFree, an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award
Number DE-SC0001057.

Author contributions
R.A. designed research; M.R. performed research; A.B.B., M.R., H.-K.M. and R.A. analyzed
data; and A.B.B., M.R., H.-k.M. and R.A. wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Belonoshko, A.B., Ramzan, M., Mao, H.-K. & Ahuja, R. Atomic
Diffusion in Solid Molecular Hydrogen. Sci. Rep. 3, 2340; DOI:10.1038/srep02340 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2340 | DOI: 10.1038/srep02340 5

http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Melting curve of hydrogen.
	Figure 2 Trajectories of atoms for Cmca-12 at 260&emsp14;GPa.
	References
	Figure 5 Radial distribution function (RDF) of hydrogen for Cmca-12 at the density 1.54083 A&ring;3/atom and T = 92&emsp14;K.
	Figure 6 Density of states for the charge distribution according to Bader procedure for Cmca-12 at 260&emsp14;GPa.



